Academic literature on the topic 'Symmetry group'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Symmetry group.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Symmetry group"

1

Grenier, B., and R. Ballou. "Crystallography: Symmetry groups and group representations." EPJ Web of Conferences 22 (2012): 00006. http://dx.doi.org/10.1051/epjconf/20122200006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dryzun, Chaim. "Continuous symmetry measures for complex symmetry group." Journal of Computational Chemistry 35, no. 9 (February 6, 2014): 748–55. http://dx.doi.org/10.1002/jcc.23548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Richey, M. P., and C. A. Tracy. "Symmetry group for a completely symmetric vertex model." Journal of Physics A: Mathematical and General 20, no. 10 (July 11, 1987): 2667–77. http://dx.doi.org/10.1088/0305-4470/20/10/010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

RAUHUT, HOLGER. "WAVELET TRANSFORMS ASSOCIATED TO GROUP REPRESENTATIONS AND FUNCTIONS INVARIANT UNDER SYMMETRY GROUPS." International Journal of Wavelets, Multiresolution and Information Processing 03, no. 02 (June 2005): 167–87. http://dx.doi.org/10.1142/s0219691305000816.

Full text
Abstract:
We study the wavelet transform of functions invariant under a symmetry group, where the wavelet transform is associated to an irreducible unitary group representation. Among other results a new inversion formula and a new covariance principle are derived. As main examples we discuss the continuous wavelet transform and the short time Fourier transform of radially symmetric functions on ℝd.
APA, Harvard, Vancouver, ISO, and other styles
5

Klickstein, Isaac, Louis Pecora, and Francesco Sorrentino. "Symmetry induced group consensus." Chaos: An Interdisciplinary Journal of Nonlinear Science 29, no. 7 (July 2019): 073101. http://dx.doi.org/10.1063/1.5098335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fernández, Francisco M., and Javier Garcia. "Parity-time symmetry broken by point-group symmetry." Journal of Mathematical Physics 55, no. 4 (April 2014): 042107. http://dx.doi.org/10.1063/1.4870642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zamani, Yousef, and Esmaeil Babaei. "SYMMETRY CLASSES OF POLYNOMIALS ASSOCIATED WITH THE DICYCLIC GROUP." Asian-European Journal of Mathematics 06, no. 03 (September 2013): 1350033. http://dx.doi.org/10.1142/s1793557113500332.

Full text
Abstract:
In this paper, we obtain the dimensions of symmetry classes of polynomials with respect to the irreducible characters of the dicyclic group as a subgroup of the full symmetric group. Then we discuss the existence of o-basis of these classes. In particular, the existence of o-basis of symmetry classes of polynomials with respect to the irreducible characters of the generalized quaternion group are concluded.
APA, Harvard, Vancouver, ISO, and other styles
8

PIROGOV, YU F. "CHIRAL GAUGE E6 AS A BINDING GROUP FOR COMPOSITE LEPTONS, QUARKS AND HIGGS BOSONS." International Journal of Modern Physics A 09, no. 09 (April 10, 1994): 1397–410. http://dx.doi.org/10.1142/s0217751x94000613.

Full text
Abstract:
The uniqueness of the chiral gauge E6 symmetry in providing the mechanism of binding for composite models is stressed. A maximally symmetric pattern of chiral symmetry breaking, consistent with dynamical mass generation along with preservation of the strongly coupled E6 gauge symmetry, is considered. Chiral anomaly matching conditions for the residual chiral symmetry are studied and likely massless composite fermions are found. The possibility for these fermions as well as Goldstone bosons to be treated eventually as leptons, quarks and Higgs bosons is discussed. The scheme possesses the generic realistic-like features and could serve as a prototype for a realistic composite model.
APA, Harvard, Vancouver, ISO, and other styles
9

Matthews, P. C. "Automating Symmetry-Breaking Calculations." LMS Journal of Computation and Mathematics 7 (2004): 101–19. http://dx.doi.org/10.1112/s1461157000001066.

Full text
Abstract:
AbstractThe process of classifying possible symmetry-breaking bifurcations requires a computation involving the subgroups and irreducible representations of the original symmetry group. It is shown how this calculation can be automated using a group theory package such as GAP. This enables a number of new results to be obtained for larger symmetry groups, where manual computation is impractical. Examples of symmetric and alternating groups are given, and the method is also applied to the spatial symmetry-breaking of periodic patterns observed in experiments.
APA, Harvard, Vancouver, ISO, and other styles
10

Dmitriev, Victor, Dimitrios C. Zografopoulos, and Luis P. V. Matos. "Analysis of Symmetric Electromagnetic Components Using Magnetic Group Theory." Symmetry 15, no. 2 (February 3, 2023): 415. http://dx.doi.org/10.3390/sym15020415.

Full text
Abstract:
We discuss a method of analysis of symmetric electromagnetic components with magnetic media based on magnetic group theory. In this description, some of the irreducible corepresentations assume complex values exp(iθ) with the real parameter θ. A possible physical interpretation of this parameter is given. We demonstrate the application of the symmetry-adapted linear combination method combined with the corepresentation theory to the problem of current modes in an array of magnetized graphene elements where Faraday and Kerr effects can exist. The elements are described by the magnetic symmetry C4 or C4v(C4). The scattering matrix of the array and its eigensolutions are defined and analyzed and some numerical simulations are presented as well. An example of a waveguide described by symmetry C4v(C2v) with a specific type of degeneracy is also discussed.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Symmetry group"

1

George, Timothy Edward. "Symmetric representation of elements of finite groups." CSUSB ScholarWorks, 2006. https://scholarworks.lib.csusb.edu/etd-project/3105.

Full text
Abstract:
The purpose of the thesis is to give an alternative and more efficient method for working with finite groups by constructing finite groups as homomorphic images of progenitors. The method introduced can be applied to all finite groups that possess symmetric generating sets of involutions. Such groups include all finite non-abelian simple groups, which can then be constructed by the technique of manual double coset enumeration.
APA, Harvard, Vancouver, ISO, and other styles
2

Carteret, Hilary Ann. "Symmetry and multiparticle entanglement." Thesis, University of York, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Seungkyu Liu Yanxi. "Symmetry group extraction from multidimensional real data." [University Park, Pa.] : Pennsylvania State University, 2009. http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-4720/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bone, Richard George Andrew. "New applications of the molecular symmetry group." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Henninger, Helen Clare. "The symmetry group of a model of hyperbolic plane geometry and some associated invariant optimal control problems." Thesis, Rhodes University, 2012. http://hdl.handle.net/10962/d1018232.

Full text
Abstract:
In this thesis we study left-invariant control offine systems on the symmetry group of a. model of hyperbolic plane geometry, the matrix Lie group SO(1, 2)₀. We determine that there are 10 distinct classes of such control systems and for typical elements of two of these classes we provide solutions of the left-invariant optimal wntrol problem with quauratic costs. Under the identification of the Lie allgebra .so(l, 2) with Minkowski spacetime R¹̕'², we construct a controllabilility criterion for all left-invariant control affine systems on 50(1. 2)₀ which in the inhomogeneous case depends only on the presence or absence of an element in the image of the system's trace in R¹̕ ²which is identifiable using the inner product. For the solutions of both the optimal control problems, we provide explicit expressions in terms of Jacobi elliptic functions for the solutions of the reduced extremal equations and determine the nonlinear stability of the equilibrium points.
APA, Harvard, Vancouver, ISO, and other styles
6

Huyal, Ulas. "Conformal Symmetry In Field Theory." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613136/index.pdf.

Full text
Abstract:
In this thesis, conformal transformations in d and two dimensions and the results of conformal symmetry in classical and quantum field theories are reviewed. After investigating the conformal group and its algebra, various aspects of conformal invariance in field theories, like conserved charges, correlation functions and the Ward identities are discussed. The central charge and the Virasoro algebra are briefly touched upon.
APA, Harvard, Vancouver, ISO, and other styles
7

Hills, Robert K. "The algebra of a class of permutation invariant irreducible operators." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vaintrob, Dmitry. "Mirror symmetry and the K theory of a p-adic group." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104578.

Full text
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2016.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 59-61).
Let G be a split, semisimple p-adic group. We construct a derived localization functor Loc : ... from the compactified category of [BK2] associated to G to the category of equivariant sheaves on the Bruhat-Tits building whose stalks have finite-multiplicity isotypic components as representations of the stabilizer. Our construction is motivated by the "coherent-constructible correspondence" functor in toric mirror symmetry and a construction of [CCC]. We show that Loc has a number of useful properties, including the fact that the sections ... compactifying the finitely-generated representation V. We also construct a depth by Dmitry A. Vaintrob.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
9

Gersch, Roland. "Symmetry breaking in interacting Fermi systems with the functional renormalization group." [S.l. : s.n.], 2007. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-32947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cassart, Delphine. "Optimal tests for symmetry." Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210693.

Full text
Abstract:
Dans ce travail, nous proposons des procédures de test paramétriques et nonparamétrique localement et asymptotiquement optimales au sens de Hajek et Le Cam, pour trois modèles d'asymétrie.

La construction de modèles d'asymétrie est un sujet de recherche qui a connu un grand développement ces dernières années, et l'obtention des tests optimaux (pour trois modèles différents) est une étape essentielle en vue de leur mise en application.

Notre approche est fondée sur la théorie de Le Cam d'une part, pour obtenir les propriétés de normalité asymptotique, bases de la construction des tests paramétriques optimaux, et la théorie de Hajek d'autre part, qui, via un principe d'invariance permet d'obtenir les procédures non-paramétriques.

Nous considérons dans ce travail deux classes de distributions univariées asymétriques, l'une fondée sur un développement d'Edgeworth (décrit dans le Chapitre 1), et l'autre construite en utilisant un paramètre d'échelle différent pour les valeurs positives et négatives (le modèle de Fechner, décrit dans le Chapitre 2).

Le modèle d'asymétrie elliptique étudié dans le dernier chapitre est une généralisation multivariée du modèle du Chapitre 2.

Pour chacun de ces modèles, nous proposons de tester l'hypothèse de symétrie par rapport à un centre fixé, puis par rapport à un centre non spécifié.

Après avoir décrit le modèle pour lequel nous construisons les procédures optimales, nous obtenons la propriété de normalité locale asymptotique. A partir de ce résultat, nous sommes capable de construire les tests paramétriques localement et asymptotiquement optimaux. Ces tests ne sont toutefois valides que si la densité sous-jacente f est correctement spécifiée. Ils ont donc le mérite de déterminer les bornes d'efficacité paramétrique, mais sont difficilement applicables.

Nous adaptons donc ces tests afin de pouvoir tester les hypothèses de symétrie par rapport à un centre fixé ou non, lorsque la densité sous-jacente est considérée comme un paramètre de nuisance.

Les tests que nous obtenons restent localement et asymptotiquement optimaux sous f, mais restent valides sous une large classe de densités.

A partir des propriétés d'invariance du sous-modèle identifié par l'hypothèse nulle, nous obtenons les tests de rangs signés localement et asymptotiquement optimaux sous f, et valide sous une vaste classe de densité. Nous présentons en particulier, les tests fondés sur les scores normaux (ou tests de van der Waerden), qui sont optimaux sous des hypothèses Gaussiennes, tout en étant valides si cette hypothèse n'est pas vérifiée.

Afin de comparer les performances des tests paramétriques et non paramétriques présentés, nous calculons les efficacités asymptotiques relatives des tests non paramétriques par rapport aux tests pseudo-Gaussiens, sous une vaste classe de densités non-Gaussiennes, et nous proposons quelques simulations.
Doctorat en sciences, Orientation statistique
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Symmetry group"

1

Groups and symmetry. New York: Springer-Verlag, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Carter, Robert L. Molecular symmetry and group theory. New York: J. Wiley, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

1940-, Baum Carl E., and Kritikos H. N, eds. Electromagnetic symmetry. Washington, D.C: Taylor & Francis, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pauncz, Ruben. The symmetric group in quantum chemistry. Boca Raton: CRC Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ladd, Mark. Symmetry and group theory in chemistry. Chichester: Horwood, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rowe, David John. Practical group theory. 2nd ed. [Toronto, Ont.]: Custom Pub. Service, University of Toronto Bookstores, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Molecular symmetry. Chichester, U. K: Wiley, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Symmetry rules: How science and nature are founded on symmetry. Berlin: Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Holod, P. I. Matematychni osnovy teoriï symetriĭ. Kyïv: Nauk. dumka, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

R, Wallach Nolan, ed. Symmetry, representations, and invariants. Dordrecht [Netherlands]: Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Symmetry group"

1

Davidson, George. "Symmetry elements and symmetry operations." In Group theory for chemists, 1–16. London: Palgrave Macmillan UK, 1991. http://dx.doi.org/10.1007/978-1-349-21357-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Franzen, Hugo Friedrich. "Space Group Symmetry." In Physical Chemistry of Inorganic Crystalline Solids, 24–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71237-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rosen, Joseph. "Group Theory Continued." In Symmetry in Science, 38–65. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-2506-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Golubitsky, Martin, and Ian Stewart. "Bifurcation From Group Orbits." In The Symmetry Perspective, 161–99. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8167-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Davvaz, Bijan. "Group Actions on Sets." In Groups and Symmetry, 1–46. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6108-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lesk, Arthur M. "Symmetry." In Introduction to Symmetry and Group Theory for Chemists, 3–10. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2151-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Davidson, George. "Symmetry and bonding." In Group theory for chemists, 123–49. London: Palgrave Macmillan UK, 1991. http://dx.doi.org/10.1007/978-1-349-21357-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dietrich, R. V. "Symmetry and Morphological Crystallography." In The Tourmaline Group, 11–40. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-8085-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Singer, Stephanie Frank. "Symmetries are Lie Group Actions." In Symmetry in Mechanics, 83–100. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-0189-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

King, R. Bruce. "Group Theory and Symmetry." In Beyond the Quartic Equation, 1–28. Boston: Birkhäuser Boston, 2008. http://dx.doi.org/10.1007/978-0-8176-4849-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Symmetry group"

1

Shah, Parikshit, and Venkat Chandrasekaran. "Group symmetry and covariance regularization." In 2012 46th Annual Conference on Information Sciences and Systems (CISS). IEEE, 2012. http://dx.doi.org/10.1109/ciss.2012.6310765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

MURATA, SOUICHI. "RENORMALIZATION GROUP SYMMETRY AND GAS DYNAMICS." In Proceedings of the International Conference on SPT 2004. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702142_0027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dawkins, Paloma, Maral Mohammadian, and Tali Goldstein. "Museum of symmetry." In SIGGRAPH '18: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3226552.3226568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Yong-Lu, Yue Xu, Xiaohan Mao, and Cewu Lu. "Symmetry and Group in Attribute-Object Compositions." In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020. http://dx.doi.org/10.1109/cvpr42600.2020.01133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Itoh, Katsumi. "Gauge Symmetry and the Functional Renormalization Group." In Sakata Memorial Workshop on Origin of Mass and Strong Coupling Gauge Theories. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813231467_0018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Soloveychik, Ilya, and Ami Wiesel. "Group symmetry and non-Gaussian covariance estimation." In 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2013. http://dx.doi.org/10.1109/globalsip.2013.6737087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Parra-Mejı́as, Zaida. "Description of nanotubes using line group symmetry." In ELECTRONIC PROPERTIES OF MOLECULAR NANOSTRUCTURES: XV International Winterschool/Euroconference. AIP, 2001. http://dx.doi.org/10.1063/1.1426906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kharinov, Mikhail. "Natural non‐group symmetry in modern applications." In V International Scientific Workshop on Modeling, Information Processing and Computing. CEUR-WS.org, 2022. http://dx.doi.org/10.47813/dnit-mip5/2022-3091-38-45.

Full text
Abstract:
Intuitively perceived symmetry is formalized for effective application in physics, mathematics, and engineering. In this regard, several scientific research directions are indicated, which are expressed by three generalizations: a) the concept of symmetry using the example of normalized Hadamard matrices; b) cross vector product for the cases of three arguments and seven-dimensional space, c) Lorentz transformations for doubling the spacetime dimension. To generalize and formalize the concept of symmetry, the preservation of the symmetry of matrices under permutations of rows (columns) is studied. It is shown that the set of symmetrypreserving permutations does not constitute a group. For the development of the octonion toolkit and the best generalization of the vector product, based on symmetry considerations, the decomposition of the triple product of octonions into the sum of a triple anticommutator, a triple commutator (generalized vector product) and an associator is deduced. To begin the generalization of Lorentz transformations Lorentz boost is recorded in terms of quaternions so that the treated expressions retain their meaning in the octonionic space. To speed up the assimilation of the research results, the paper proposes some elementary information on the three listed topics, which it is desirable to place in reference books, as well as bring to the attention of students in general education courses at technical universities.
APA, Harvard, Vancouver, ISO, and other styles
9

Talyshev, Aleksandr A. "On extensions of the Poincaré group." In MODERN TREATMENT OF SYMMETRIES, DIFFERENTIAL EQUATIONS AND APPLICATIONS (Symmetry 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5125086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

AYALA-SÁNCHEZ, MAURICIO, and RICHARD W. HAASE. "GROUP CONTRACTIONS AND ITS CONSEQUENCES UPON REPRESENTATIONS OF DIFFERENT SPATIAL SYMMETRY GROUPS." In Proceedings of the Summer School. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705068_0008.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Symmetry group"

1

Vassilev, Vassil. Geometric Symmetry Groups, Conservation Laws and Group-Invariant Solutions of the Willmore Equation. GIQ, 2012. http://dx.doi.org/10.7546/giq-5-2004-246-265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vassilev, Vassil M., and Peter A. Djondjorov. Symmetry Groups, Conservation Laws and Group– Invariant Solutions of the Membrane Shape Equation. GIQ, 2012. http://dx.doi.org/10.7546/giq-7-2006-265-279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jensen, David W., and Robert G. Harvey. Plane Symmetry Groups. Fort Belvoir, VA: Defense Technical Information Center, June 1988. http://dx.doi.org/10.21236/ada198952.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bergman, Anna Marie. Identifying a Starting Point for the Guided Reinvention of the Classification of Chemically Important Symmetry Groups. Portland State University Library, May 2020. http://dx.doi.org/10.15760/etd.7349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mekjian, A. Z., and S. J. Lee. Models of fragmentation phenomena based on the symmetric group S{sub n} and combinational analysis. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/10107058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mekjian, A. Z., and S. J. Lee. Models of fragmentation phenomena based on the symmetric group S sub n and combinational analysis. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/6091012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Blaze, Matt, Whitfield Diffie, Ronald L. Rivest, Bruce Schneier, and Tsutomu Shimomura. Minimal Key Lengths for Symmetric Ciphers to Provide Adequate Commercial Security. A Report by an Ad Hoc Group of Cryptographers and Computer Scientists. Fort Belvoir, VA: Defense Technical Information Center, March 1996. http://dx.doi.org/10.21236/ada385264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography