Academic literature on the topic 'Symmetry group'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Symmetry group.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Symmetry group"
Grenier, B., and R. Ballou. "Crystallography: Symmetry groups and group representations." EPJ Web of Conferences 22 (2012): 00006. http://dx.doi.org/10.1051/epjconf/20122200006.
Full textDryzun, Chaim. "Continuous symmetry measures for complex symmetry group." Journal of Computational Chemistry 35, no. 9 (February 6, 2014): 748–55. http://dx.doi.org/10.1002/jcc.23548.
Full textRichey, M. P., and C. A. Tracy. "Symmetry group for a completely symmetric vertex model." Journal of Physics A: Mathematical and General 20, no. 10 (July 11, 1987): 2667–77. http://dx.doi.org/10.1088/0305-4470/20/10/010.
Full textRAUHUT, HOLGER. "WAVELET TRANSFORMS ASSOCIATED TO GROUP REPRESENTATIONS AND FUNCTIONS INVARIANT UNDER SYMMETRY GROUPS." International Journal of Wavelets, Multiresolution and Information Processing 03, no. 02 (June 2005): 167–87. http://dx.doi.org/10.1142/s0219691305000816.
Full textKlickstein, Isaac, Louis Pecora, and Francesco Sorrentino. "Symmetry induced group consensus." Chaos: An Interdisciplinary Journal of Nonlinear Science 29, no. 7 (July 2019): 073101. http://dx.doi.org/10.1063/1.5098335.
Full textFernández, Francisco M., and Javier Garcia. "Parity-time symmetry broken by point-group symmetry." Journal of Mathematical Physics 55, no. 4 (April 2014): 042107. http://dx.doi.org/10.1063/1.4870642.
Full textZamani, Yousef, and Esmaeil Babaei. "SYMMETRY CLASSES OF POLYNOMIALS ASSOCIATED WITH THE DICYCLIC GROUP." Asian-European Journal of Mathematics 06, no. 03 (September 2013): 1350033. http://dx.doi.org/10.1142/s1793557113500332.
Full textPIROGOV, YU F. "CHIRAL GAUGE E6 AS A BINDING GROUP FOR COMPOSITE LEPTONS, QUARKS AND HIGGS BOSONS." International Journal of Modern Physics A 09, no. 09 (April 10, 1994): 1397–410. http://dx.doi.org/10.1142/s0217751x94000613.
Full textMatthews, P. C. "Automating Symmetry-Breaking Calculations." LMS Journal of Computation and Mathematics 7 (2004): 101–19. http://dx.doi.org/10.1112/s1461157000001066.
Full textDmitriev, Victor, Dimitrios C. Zografopoulos, and Luis P. V. Matos. "Analysis of Symmetric Electromagnetic Components Using Magnetic Group Theory." Symmetry 15, no. 2 (February 3, 2023): 415. http://dx.doi.org/10.3390/sym15020415.
Full textDissertations / Theses on the topic "Symmetry group"
George, Timothy Edward. "Symmetric representation of elements of finite groups." CSUSB ScholarWorks, 2006. https://scholarworks.lib.csusb.edu/etd-project/3105.
Full textCarteret, Hilary Ann. "Symmetry and multiparticle entanglement." Thesis, University of York, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341118.
Full textLee, Seungkyu Liu Yanxi. "Symmetry group extraction from multidimensional real data." [University Park, Pa.] : Pennsylvania State University, 2009. http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-4720/index.html.
Full textBone, Richard George Andrew. "New applications of the molecular symmetry group." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239761.
Full textHenninger, Helen Clare. "The symmetry group of a model of hyperbolic plane geometry and some associated invariant optimal control problems." Thesis, Rhodes University, 2012. http://hdl.handle.net/10962/d1018232.
Full textHuyal, Ulas. "Conformal Symmetry In Field Theory." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613136/index.pdf.
Full textHills, Robert K. "The algebra of a class of permutation invariant irreducible operators." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260729.
Full textVaintrob, Dmitry. "Mirror symmetry and the K theory of a p-adic group." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104578.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 59-61).
Let G be a split, semisimple p-adic group. We construct a derived localization functor Loc : ... from the compactified category of [BK2] associated to G to the category of equivariant sheaves on the Bruhat-Tits building whose stalks have finite-multiplicity isotypic components as representations of the stabilizer. Our construction is motivated by the "coherent-constructible correspondence" functor in toric mirror symmetry and a construction of [CCC]. We show that Loc has a number of useful properties, including the fact that the sections ... compactifying the finitely-generated representation V. We also construct a depth = e "truncated" analogue Loc(e) which has finite-dimensional stalks, and satisfies the property RIP ... V of depth = e. We deduce that every finitely-generated representation of G has a bounded resolution by representations induced from finite-dimensional representations of compact open subgroups, and use this to write down a set of generators for the K-theory of G in terms of K-theory of its parahoric subgroups.
by Dmitry A. Vaintrob.
Ph. D.
Gersch, Roland. "Symmetry breaking in interacting Fermi systems with the functional renormalization group." [S.l. : s.n.], 2007. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-32947.
Full textCassart, Delphine. "Optimal tests for symmetry." Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210693.
Full textLa construction de modèles d'asymétrie est un sujet de recherche qui a connu un grand développement ces dernières années, et l'obtention des tests optimaux (pour trois modèles différents) est une étape essentielle en vue de leur mise en application.
Notre approche est fondée sur la théorie de Le Cam d'une part, pour obtenir les propriétés de normalité asymptotique, bases de la construction des tests paramétriques optimaux, et la théorie de Hajek d'autre part, qui, via un principe d'invariance permet d'obtenir les procédures non-paramétriques.
Nous considérons dans ce travail deux classes de distributions univariées asymétriques, l'une fondée sur un développement d'Edgeworth (décrit dans le Chapitre 1), et l'autre construite en utilisant un paramètre d'échelle différent pour les valeurs positives et négatives (le modèle de Fechner, décrit dans le Chapitre 2).
Le modèle d'asymétrie elliptique étudié dans le dernier chapitre est une généralisation multivariée du modèle du Chapitre 2.
Pour chacun de ces modèles, nous proposons de tester l'hypothèse de symétrie par rapport à un centre fixé, puis par rapport à un centre non spécifié.
Après avoir décrit le modèle pour lequel nous construisons les procédures optimales, nous obtenons la propriété de normalité locale asymptotique. A partir de ce résultat, nous sommes capable de construire les tests paramétriques localement et asymptotiquement optimaux. Ces tests ne sont toutefois valides que si la densité sous-jacente f est correctement spécifiée. Ils ont donc le mérite de déterminer les bornes d'efficacité paramétrique, mais sont difficilement applicables.
Nous adaptons donc ces tests afin de pouvoir tester les hypothèses de symétrie par rapport à un centre fixé ou non, lorsque la densité sous-jacente est considérée comme un paramètre de nuisance.
Les tests que nous obtenons restent localement et asymptotiquement optimaux sous f, mais restent valides sous une large classe de densités.
A partir des propriétés d'invariance du sous-modèle identifié par l'hypothèse nulle, nous obtenons les tests de rangs signés localement et asymptotiquement optimaux sous f, et valide sous une vaste classe de densité. Nous présentons en particulier, les tests fondés sur les scores normaux (ou tests de van der Waerden), qui sont optimaux sous des hypothèses Gaussiennes, tout en étant valides si cette hypothèse n'est pas vérifiée.
Afin de comparer les performances des tests paramétriques et non paramétriques présentés, nous calculons les efficacités asymptotiques relatives des tests non paramétriques par rapport aux tests pseudo-Gaussiens, sous une vaste classe de densités non-Gaussiennes, et nous proposons quelques simulations.
Doctorat en sciences, Orientation statistique
info:eu-repo/semantics/nonPublished
Books on the topic "Symmetry group"
1940-, Baum Carl E., and Kritikos H. N, eds. Electromagnetic symmetry. Washington, D.C: Taylor & Francis, 1995.
Find full textPauncz, Ruben. The symmetric group in quantum chemistry. Boca Raton: CRC Press, 1995.
Find full textRowe, David John. Practical group theory. 2nd ed. [Toronto, Ont.]: Custom Pub. Service, University of Toronto Bookstores, 1995.
Find full textSymmetry rules: How science and nature are founded on symmetry. Berlin: Springer, 2008.
Find full textR, Wallach Nolan, ed. Symmetry, representations, and invariants. Dordrecht [Netherlands]: Springer, 2009.
Find full textBook chapters on the topic "Symmetry group"
Davidson, George. "Symmetry elements and symmetry operations." In Group theory for chemists, 1–16. London: Palgrave Macmillan UK, 1991. http://dx.doi.org/10.1007/978-1-349-21357-3_1.
Full textFranzen, Hugo Friedrich. "Space Group Symmetry." In Physical Chemistry of Inorganic Crystalline Solids, 24–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71237-1_3.
Full textRosen, Joseph. "Group Theory Continued." In Symmetry in Science, 38–65. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-2506-5_3.
Full textGolubitsky, Martin, and Ian Stewart. "Bifurcation From Group Orbits." In The Symmetry Perspective, 161–99. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8167-8_6.
Full textDavvaz, Bijan. "Group Actions on Sets." In Groups and Symmetry, 1–46. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6108-2_1.
Full textLesk, Arthur M. "Symmetry." In Introduction to Symmetry and Group Theory for Chemists, 3–10. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2151-8_2.
Full textDavidson, George. "Symmetry and bonding." In Group theory for chemists, 123–49. London: Palgrave Macmillan UK, 1991. http://dx.doi.org/10.1007/978-1-349-21357-3_10.
Full textDietrich, R. V. "Symmetry and Morphological Crystallography." In The Tourmaline Group, 11–40. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-8085-6_2.
Full textSinger, Stephanie Frank. "Symmetries are Lie Group Actions." In Symmetry in Mechanics, 83–100. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-0189-2_6.
Full textKing, R. Bruce. "Group Theory and Symmetry." In Beyond the Quartic Equation, 1–28. Boston: Birkhäuser Boston, 2008. http://dx.doi.org/10.1007/978-0-8176-4849-7_2.
Full textConference papers on the topic "Symmetry group"
Shah, Parikshit, and Venkat Chandrasekaran. "Group symmetry and covariance regularization." In 2012 46th Annual Conference on Information Sciences and Systems (CISS). IEEE, 2012. http://dx.doi.org/10.1109/ciss.2012.6310765.
Full textMURATA, SOUICHI. "RENORMALIZATION GROUP SYMMETRY AND GAS DYNAMICS." In Proceedings of the International Conference on SPT 2004. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702142_0027.
Full textDawkins, Paloma, Maral Mohammadian, and Tali Goldstein. "Museum of symmetry." In SIGGRAPH '18: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3226552.3226568.
Full textLi, Yong-Lu, Yue Xu, Xiaohan Mao, and Cewu Lu. "Symmetry and Group in Attribute-Object Compositions." In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020. http://dx.doi.org/10.1109/cvpr42600.2020.01133.
Full textItoh, Katsumi. "Gauge Symmetry and the Functional Renormalization Group." In Sakata Memorial Workshop on Origin of Mass and Strong Coupling Gauge Theories. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813231467_0018.
Full textSoloveychik, Ilya, and Ami Wiesel. "Group symmetry and non-Gaussian covariance estimation." In 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2013. http://dx.doi.org/10.1109/globalsip.2013.6737087.
Full textParra-Mejı́as, Zaida. "Description of nanotubes using line group symmetry." In ELECTRONIC PROPERTIES OF MOLECULAR NANOSTRUCTURES: XV International Winterschool/Euroconference. AIP, 2001. http://dx.doi.org/10.1063/1.1426906.
Full textKharinov, Mikhail. "Natural non‐group symmetry in modern applications." In V International Scientific Workshop on Modeling, Information Processing and Computing. CEUR-WS.org, 2022. http://dx.doi.org/10.47813/dnit-mip5/2022-3091-38-45.
Full textTalyshev, Aleksandr A. "On extensions of the Poincaré group." In MODERN TREATMENT OF SYMMETRIES, DIFFERENTIAL EQUATIONS AND APPLICATIONS (Symmetry 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5125086.
Full textAYALA-SÁNCHEZ, MAURICIO, and RICHARD W. HAASE. "GROUP CONTRACTIONS AND ITS CONSEQUENCES UPON REPRESENTATIONS OF DIFFERENT SPATIAL SYMMETRY GROUPS." In Proceedings of the Summer School. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705068_0008.
Full textReports on the topic "Symmetry group"
Vassilev, Vassil. Geometric Symmetry Groups, Conservation Laws and Group-Invariant Solutions of the Willmore Equation. GIQ, 2012. http://dx.doi.org/10.7546/giq-5-2004-246-265.
Full textVassilev, Vassil M., and Peter A. Djondjorov. Symmetry Groups, Conservation Laws and Group– Invariant Solutions of the Membrane Shape Equation. GIQ, 2012. http://dx.doi.org/10.7546/giq-7-2006-265-279.
Full textJensen, David W., and Robert G. Harvey. Plane Symmetry Groups. Fort Belvoir, VA: Defense Technical Information Center, June 1988. http://dx.doi.org/10.21236/ada198952.
Full textBergman, Anna Marie. Identifying a Starting Point for the Guided Reinvention of the Classification of Chemically Important Symmetry Groups. Portland State University Library, May 2020. http://dx.doi.org/10.15760/etd.7349.
Full textMekjian, A. Z., and S. J. Lee. Models of fragmentation phenomena based on the symmetric group S{sub n} and combinational analysis. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/10107058.
Full textMekjian, A. Z., and S. J. Lee. Models of fragmentation phenomena based on the symmetric group S sub n and combinational analysis. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/6091012.
Full textBlaze, Matt, Whitfield Diffie, Ronald L. Rivest, Bruce Schneier, and Tsutomu Shimomura. Minimal Key Lengths for Symmetric Ciphers to Provide Adequate Commercial Security. A Report by an Ad Hoc Group of Cryptographers and Computer Scientists. Fort Belvoir, VA: Defense Technical Information Center, March 1996. http://dx.doi.org/10.21236/ada385264.
Full text