Academic literature on the topic 'Symplectic groupoids'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Symplectic groupoids.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Symplectic groupoids"

1

MACKENZIE, K. C. H. "ON SYMPLECTIC DOUBLE GROUPOIDS AND THE DUALITY OF POISSON GROUPOIDS." International Journal of Mathematics 10, no. 04 (1999): 435–56. http://dx.doi.org/10.1142/s0129167x99000185.

Full text
Abstract:
We prove that the cotangent of a double Lie groupoid S has itself a double groupoid structure with sides the duals of associated Lie algebroids, and double base the dual of the Lie algebroid of the core of S. Using this, we prove a result outlined by Weinstein in 1988, that the side groupoids of a general symplectic double groupoid are Poisson groupoids in duality. Further, we prove that any double Lie groupoid gives rise to a pair of Poisson groupoids (and thus of Lie bialgebroids) in duality. To handle the structures involved effectively we extend to this context the dualities and canonical isomorphisms for tangent and cotangent structures of the author and Ping Xu.
APA, Harvard, Vancouver, ISO, and other styles
2

Cattaneo, Alberto S., Benoit Dherin, and Giovanni Felder. "Formal Lagrangian Operad." International Journal of Mathematics and Mathematical Sciences 2010 (2010): 1–36. http://dx.doi.org/10.1155/2010/643605.

Full text
Abstract:
Given a symplectic manifoldM, we may define an operad structure on the the spacesOkof the Lagrangian submanifolds of(M¯)k×Mvia symplectic reduction. IfMis also a symplectic groupoid, then its multiplication space is an associative product in this operad. Following this idea, we provide a deformation theory for symplectic groupoids analog to the deformation theory of algebras. It turns out that the semiclassical part of Kontsevich's deformation ofC∞(ℝd) is a deformation of the trivial symplectic groupoid structure ofT∗ℝd.
APA, Harvard, Vancouver, ISO, and other styles
3

XU, PING. "ON POISSON GROUPOIDS." International Journal of Mathematics 06, no. 01 (1995): 101–24. http://dx.doi.org/10.1142/s0129167x95000080.

Full text
Abstract:
Some important properties of Poisson groupoids are discussed. In particular, we obtain a useful formula for the Poisson tensor of an arbitrary Poisson groupoid, which generalizes the well-known multiplicativity condition for Poisson groups. Morphisms between Poisson groupoids and between Lie bialgebroids are also discussed. In particular, for a special class of Lie bialgebroid morphisms, we give an explicit lifting construction. As an application, we prove that a Poisson group action on a Poisson manifold lifts to a Poisson action on its α-simply connected symplectic groupoid.
APA, Harvard, Vancouver, ISO, and other styles
4

Ševera, Pavol, and Michal Širaň. "Integration of Differential Graded Manifolds." International Mathematics Research Notices 2020, no. 20 (2019): 6769–814. http://dx.doi.org/10.1093/imrn/rnz004.

Full text
Abstract:
Abstract We consider the problem of integration of $L_\infty $-algebroids (differential non-negatively graded manifolds) to $L_\infty $-groupoids. We first construct a “big” Kan simplicial manifold (Fréchet or Banach) whose points are solutions of a (generalized) Maurer–Cartan equation. The main analytic trick in our work is an integral transformation sending the solutions of the Maurer–Cartan equation to closed differential forms. Following the ideas of Ezra Getzler, we then impose a gauge condition that cuts out a finite-dimensional simplicial submanifold. This “smaller” simplicial manifold is (the nerve of) a local Lie $\ell $-groupoid. The gauge condition can be imposed only locally in the base of the $L_\infty $-algebroid; the resulting local $\ell $-groupoids glue up to a coherent homotopy, that is, we get a homotopy coherent diagram from the nerve of a good cover of the base to the (simplicial) category of local $\ell $-groupoids. Finally, we show that a $k$-symplectic differential non-negatively graded manifold integrates to a local $k$-symplectic Lie $\ell$-groupoid; globally, these assemble to form an $A_\infty$-functor. As a particular case for $k=2$, we obtain integration of Courant algebroids.
APA, Harvard, Vancouver, ISO, and other styles
5

Cattaneo, Alberto S., and Ivan Contreras. "Relational Symplectic Groupoids." Letters in Mathematical Physics 105, no. 5 (2015): 723–67. http://dx.doi.org/10.1007/s11005-015-0760-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gualtieri, Marco, and Songhao Li. "Symplectic Groupoids of Log Symplectic Manifolds." International Mathematics Research Notices 2014, no. 11 (2013): 3022–74. http://dx.doi.org/10.1093/imrn/rnt024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mehta, Rajan Amit, and Xiang Tang. "Constant symplectic 2-groupoids." Letters in Mathematical Physics 108, no. 5 (2017): 1203–23. http://dx.doi.org/10.1007/s11005-017-1026-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

戴, 远莉. "Symplectic Reduction for Cotangent Groupoids." Pure Mathematics 11, no. 03 (2021): 323–29. http://dx.doi.org/10.12677/pm.2021.113043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Weinstein, Alan. "Symplectic groupoids and Poisson manifolds." Bulletin of the American Mathematical Society 16, no. 1 (1987): 101–5. http://dx.doi.org/10.1090/s0273-0979-1987-15473-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Songhao, and Dylan Rupel. "Symplectic groupoids for cluster manifolds." Journal of Geometry and Physics 154 (August 2020): 103688. http://dx.doi.org/10.1016/j.geomphys.2020.103688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography