To see the other types of publications on this topic, follow the link: Symplectic manifolds Hodge theory.

Dissertations / Theses on the topic 'Symplectic manifolds Hodge theory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 17 dissertations / theses for your research on the topic 'Symplectic manifolds Hodge theory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Callander, Brian 1986. "Lefschetz fibrations = Fibrações de Lefschetz." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307041.

Full text
Abstract:
Orientador: Elizabeth Terezinha Gasparim
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-23T08:45:07Z (GMT). No. of bitstreams: 1 Callander_Brian_M.pdf: 1926930 bytes, checksum: 341dd0f9759ced382e138cd14fc4ae2c (MD5) Previous issue date: 2013
Resumo: O propósito desta tese é estudar fibrações de Lefschetz simpléticas, nas quais os ciclos evanescentes são subvariedades Lagrangianas das fibras. Para a descrição da teoria de interseção dos ciclos evanescentes utilizamos cohomologia de Floer Lagrangiana, cujo conceito revemos nesta tese. Apresentamos três exemplos principais e de caráteres distintos: (1) twists de Dehn generalizados, (2) o "espelho" da reta projetiva, e (3) uma fibração numa órbita adjunta de sl(3,C). O terceiro destes exemplos é original e utiliza um teorema recente de Gasparim- Grama-San Martin
Abstract: The objective of this thesis is to study symplectic Lefschetz fibrations, in which the vanishing cycles are Lagrangian submanifolds of the fibres. In order to describe the intersection theory of vanishing cycles we use Lagrangian intersection Floer cohomology, which we review. We present three main examples of distinct characters: (1) generalized Dehn twists, (2) the "mirror" of the projective line, and (3) a fibration on an adjoint orbit of sl(3,C). The third of these examples is original and uses a recent theorem of Gasparim- Grama-San Martin
Mestrado
Matematica
Mestre em Matemática
APA, Harvard, Vancouver, ISO, and other styles
2

Boalch, Philip. "Geometry of moduli spaces of meromorphic connections on curves, Stokes data, wild nonabelian Hodge theory, hyperkahler manifolds, isomonodromic deformations, Painleve equations, and relations to Lie theory." Habilitation à diriger des recherches, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00768643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

He, Jian. "Symplectic field theory of subcritical Stein manifolds /." May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cattaneo, Alberto. "Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds." Thesis, Poitiers, 2018. http://www.theses.fr/2018POIT2322/document.

Full text
Abstract:
Nous allons étudier les automorphismes des variétés symplectiques holomorphes irréductibles de type K3^[n], c'est-à-dire des variétés équivalentes par déformation au schéma de Hilbert de n points sur une surface K3, pour n > 1.Dans la première partie de la thèse, nous classifions les automorphismes du schéma de Hilbert de n points sur une surface K3 projective générique, dont le réseau de Picard est engendré par un fibré ample. Nous montrons que le groupe des automorphismes est soit trivial soit engendré par une involution non-symplectique et nous déterminons des conditions numériques et géométriques pour l’existence de l’involution.Dans la deuxième partie, nous étudions les automorphismes non-symplectiques d’ordre premier des variétés de type K3^[n]. Nous déterminons les propriétés du réseau invariant de l'automorphisme et de son complément orthogonal dans le deuxième réseau de cohomologie de la variété et nous classifions leurs classes d’isométrie. Dans le cas des involutions, e des automorphismes d’ordre premier impair pour n = 3, 4, nous montrons que toutes les actions en cohomologie dans notre classification sont réalisées par un automorphism non-symplectique sur une variété de type K3^[n]. Nous construisons explicitement l’immense majorité de ces automorphismes et, en particulier, nous présentons la construction d’un nouvel automorphisme d’ordre trois sur une famille de dimension dix de variétés de Lehn-Lehn-Sorger-van Straten de type K3^[4]. Pour n < 6, nous étudions aussi les espaces de modules de dimension maximal des variétés de type K3^[n] munies d’une involution non-symplectique
We study automorphisms of irreducible holomorphic symplectic manifolds of type K3^[n], i.e. manifolds which are deformation equivalent to the Hilbert scheme of n points on a K3 surface, for some n > 1. In the first part of the thesis we describe the automorphism group of the Hilbert scheme of n points on a generic projective K3 surface, i.e. a K3 surface whose Picard lattice is generated by a single ample line bundle. We show that, if it is not trivial, the automorphism group is generated by a non-symplectic involution, whose existence depends on some arithmetic conditions involving the number of points n and the polarization of the surface. We also determine necessary and sufficient conditions on the Picard lattice of the Hilbert scheme for the existence of the involution.In the second part of the thesis we study non-symplectic automorphisms of prime order on manifolds of type K3^[n]. We investigate the properties of the invariant lattice and its orthogonal complement inside the second cohomology lattice of the manifold, providing a classification of their isometry classes. We then approach the problem of constructing examples (or at least proving the existence) of manifolds of type K3^[n] with a non-symplectic automorphism inducing on cohomology each specific action in our classification. In the case of involutions, and of automorphisms of odd prime order for n=3,4, we are able to realize all possible cases. In order to do so, we present a new non-symplectic automorphism of order three on a ten-dimensional family of Lehn-Lehn-Sorger-van Straten eightfolds of type K3^[4]. Finally, for n < 6 we describe deformation families of large dimension of manifolds of type K3^[n] equipped with a non-symplectic involution
APA, Harvard, Vancouver, ISO, and other styles
5

Shamoto, Yota. "Hodge-Tate conditions for Landau-Ginzburg models." Kyoto University, 2018. http://hdl.handle.net/2433/232220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schulze, Bert-Wolfgang, and Nikolai N. Tarkhanov. "Elliptic complexes of pseudodifferential operators on manifolds with edges." Universität Potsdam, 1998. http://opus.kobv.de/ubp/volltexte/2008/2525/.

Full text
Abstract:
On a compact closed manifold with edges live pseudodifferential operators which are block matrices of operators with additional edge conditions like boundary conditions in boundary value problems. They include Green, trace and potential operators along the edges, act in a kind of Sobolev spaces and form an algebra with a wealthy symbolic structure. We consider complexes of Fréchet spaces whose differentials are given by operators in this algebra. Since the algebra in question is a microlocalization of the Lie algebra of typical vector fields on a manifold with edges, such complexes are of great geometric interest. In particular, the de Rham and Dolbeault complexes on manifolds with edges fit into this framework. To each complex there correspond two sequences of symbols, one of the two controls the interior ellipticity while the other sequence controls the ellipticity at the edges. The elliptic complexes prove to be Fredholm, i.e., have a finite-dimensional cohomology. Using specific tools in the algebra of pseudodifferential operators we develop a Hodge theory for elliptic complexes and outline a few applications thereof.
APA, Harvard, Vancouver, ISO, and other styles
7

Moreno, Agustin. "Algebraic Torsion in Higher-Dimensional Contact Manifolds." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/19849.

Full text
Abstract:
Wir konstruieren Beispiele von Kontaktmannigfaltigkeiten in jeder ungeraden Dimension, welche endliche nicht-triviale algebraische Torsion (im Sinne von Latschev-Wendl) aufweisen, somit straff sind und keine starke symplektische Füllung haben. Wir beweisen, dass Giroux Torsion algebraische 1-Torsion in jeder ungeraden Dimension impliziert, womit eine Vermutung von Massot-Niederkrüger-Wendl bewiesen wird. Wir konstruieren unendlich viele nicht diffeomorphe Beispiele von 5-dimensionalen Kontaktmannigfaltigkeiten, welche straff sind, keine starke symplektische Füllung zulassen und keine Giroux Torsion haben. Wir erhalten Obstruktionen für symplektische Kobordismen, ohne für deren Beweis die SFT Maschinerie zu verwenden. Wir geben eine provisorische Definition eines spinalen offenen Buchs in höherer Dimension an, basierend auf der vom 3-dimensionalen Fall aus Lisi-van Horn Morris-Wendl. In einem Anhang geben wir in gemeinsamer Autorenschaft mit Richard Siefring eine wesentliche Zusammenfassung der Schnitttheorie für punktierte holomorphe Kurven und Hyperflächen an, welche die 3-dimensionalen Resultate von Siefring auf höhere Dimensionen verallgemeinert. Mittels der Schnitttheorie erhalten wir eine Anwendung für holomorphe Blätterungen von Kodimension zwei, die wir benutzen um das Verhalten von holomorphem Kurven in unseren Beispielen einzuschränken.
We construct examples in any odd dimension of contact manifolds with finite and non-zero algebraic torsion (in the sense of Latschev-Wendl), which are therefore tight and do not admit strong symplectic fillings. We prove that Giroux torsion implies algebraic 1-torsion in any odd dimension, which proves a conjecture of Massot-Niederkrüger-Wendl. We construct infinitely many non-diffeomorphic examples of 5-dimensional contact manifolds which are tight, admit no strong fillings, and do not have Giroux torsion. We obtain obstruction results for symplectic cobordisms, for which we give a proof not relying on SFT machinery. We give a tentative definition of a higher-dimensional spinal open book decomposition, based on the 3-dimensional one of Lisi-van Horn Morris-Wendl. An appendix written in co-authorship with Richard Siefring gives a basic outline of the intersection theory for punctured holomorphic curves and hypersurfaces, which generalizes his 3-dimensional results to higher dimensions. From the intersection theory we obtain an application to codimension-2 holomorphic foliations, which we use to restrict the behaviour of holomorphic curves in our examples.
APA, Harvard, Vancouver, ISO, and other styles
8

Karlsson, Cecilia. "Orienting Moduli Spaces of Flow Trees for Symplectic Field Theory." Doctoral thesis, Uppsala universitet, Algebra och geometri, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-269551.

Full text
Abstract:
This thesis consists of three scientific papers dealing with invariants of Legendrian and Lagrangian submanifolds. Besides the scientific papers, the thesis contains an introduction to contact and symplectic geometry, and a brief outline of Symplectic field theory with focus on Legendrian contact homology. In Paper I we give an orientation scheme for moduli spaces of rigid flow trees in Legendrian contact homology. The flow trees can be seen as the adiabatic limit of sequences of punctured pseudo-holomorphic disks with boundary on the Lagrangian projection of the Legendrian. So to equip the trees with orientations corresponds to orienting the determinant line bundle of the dbar-operator over the space of Lagrangian boundary conditions on the punctured disk. We define an  orientation of this line bundle and prove that it is well-defined in the limit. We also prove that the chosen orientation scheme gives rise to a combinatorial algorithm for computing the orientation of the trees, and we give an explicit description of this algorithm. In Paper II we study exact Lagrangian cobordisms with cylindrical Legendrian ends, induced by Legendrian isotopies. We prove that the combinatorially defined DGA-morphisms used to prove invariance of Legendrian contact homology for Legendrian knots over the integers can be derived analytically.  This is proved using the orientation scheme from Paper I together with a count of abstractly perturbed flow trees  of the Lagrangian cobordisms. In Paper III we prove a flexibility result for closed, immersed Lagrangian submanifolds in the standard symplectic plane.
APA, Harvard, Vancouver, ISO, and other styles
9

Russell, Neil Eric. "Aspects of the symplectic and metric geometry of classical and quantum physics." Thesis, Rhodes University, 1993. http://hdl.handle.net/10962/d1005237.

Full text
Abstract:
I investigate some algebras and calculi naturally associated with the symplectic and metric Clifford algebras. In particular, I reformulate the well known Lepage decomposition for the symplectic exterior algebra in geometrical form and present some new results relating to the simple subspaces of the decomposition. I then present an analogous decomposition for the symmetric exterior algebra with a metric. Finally, I extend this symmetric exterior algebra into a new calculus for the symmetric differential forms on a pseudo-Riemannian manifold. The importance of this calculus lies in its potential for the description of bosonic systems in Quantum Theory.
APA, Harvard, Vancouver, ISO, and other styles
10

Gier, Megan E. "EIGENVALUE MULTIPLICITES OF THE HODGE LAPLACIAN ON COEXACT 2-FORMS FOR GENERIC METRICS ON 5-MANIFOLDS." UKnowledge, 2014. http://uknowledge.uky.edu/math_etds/14.

Full text
Abstract:
In 1976, Uhlenbeck used transversality theory to show that for certain families of elliptic operators, the property of having only simple eigenvalues is generic. As one application, she proved that on a closed Riemannian manifold, the eigenvalues of the Laplace-Beltrami operator Δg are all simple for a residual set of Cr metrics. In 2012, Enciso and Peralta-Salas established an analogue of Uhlenbeck's theorem for differential forms, showing that on a closed 3-manifold, there exists a residual set of Cr metrics such that the nonzero eigenvalues of the Hodge Laplacian Δg(k) on k-forms are all simple for 0 ≤ k ≤ 3. In this dissertation, we continue to address the question of whether Uhlenbeck's theorem can be extended to differential forms. In particular, we prove that for a residual set of Cr metrics, the nonzero eigenvalues of the Hodge Laplacian Δg(2) acting on coexact 2-forms on a closed 5-manifold have multiplicity 2. To prove our main result, we structure our argument around a study of the Beltrami operator *gd, which is related to the Hodge Laplacian by Δg(2) = -(*gd)2 when the operators are restricted to coexact 2-forms on a 5-manifold. We use techniques from perturbation theory to show that the Beltrami operator has only simple eigenvalues for a residual set of metrics. We further establish even eigenvalue multiplicities for the Hodge Laplacian acting on coexact k-forms in the more general setting n = 4 ℓ + 1 and k = 2 ℓ for ℓ ϵ N.
APA, Harvard, Vancouver, ISO, and other styles
11

Otto, Michael. "Symplectic convexity theorems and applications to the structure theory of semisimple Lie groups." Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1084986339.

Full text
Abstract:
Thesis (Ph. D.)--Ohio State University, 2004.
Title from first page of PDF file. Document formatted into pages; contains v, 88 p. Includes bibliographical references (p. 87-88). Available online via OhioLINK's ETD Center
APA, Harvard, Vancouver, ISO, and other styles
12

Alves, Leonardo Soriani 1991. "Geometria complexa generalizada e tópicos relacionados." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/305829.

Full text
Abstract:
Orientadores: Luiz Antonio Barrera San Martin, Lino Anderson da Silva Grama
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-27T10:27:44Z (GMT). No. of bitstreams: 1 Alves_LeonardoSoriani_M.pdf: 542116 bytes, checksum: b4db821b86b39eb2b221b4f63a4c9829 (MD5) Previous issue date: 2015
Resumo: Estudamos geometria complexa generalizada, que tem como casos particulares as geometrias complexa e simplética. Começamos com os seus fundamentos algébricos num espaço vetorial e transportamos essas noções para variedades. Estudamos o colchete de Courant na soma direta dos fibrados tangente e cotangente de uma variedade, que é essencial para definir a integrabilidade das estruturas complexas generalizadas. Verificamos que em nilvariedades de dimensão 6 sempre existe estrutura complexa generalizada invariante à esquerda, ainda que algumas delas não admitam estrutura complexa ou simplética. Estudamos duas noções de T-dualidade e suas relações com geometria complexa generalizada. Por fim recapitulamos a simetria do espelho para curvas elípticas e obtemos uma manifestação de simetria do espelho através de geometria complexa generalizada
Abstract: We study generalized complex geometry, which encompasses complex and symplectic geometry as particular cases. We begin with the algebraic basics on a vector space and then we transport these concepts to manifolds. We study the Courant bracket on the direct sum of tangent and cotangent bundles of a manifold, which is essential to define the integrability of the generalized complex structures. We check that on every $6$ dimensional nilmanifolds there is a left invariant generalized complex structure, even though some of them do not admit complex or symplectic structure. We study two notions of T-dualidade and its relations to generalized complex geometry. We recall mirror symmetry for elliptic curves and derive a manifestation of mirror symmetry from generalized complex geometry
Mestrado
Matematica
Mestre em Matemática
APA, Harvard, Vancouver, ISO, and other styles
13

Prieto, Martínez Pere Daniel. "Geometrical structures of higher-order dynamical systems and field theories." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/284215.

Full text
Abstract:
Geometrical physics is a relatively young branch of applied mathematics that was initiated by the 60's and the 70's when A. Lichnerowicz, W.M. Tulczyjew and J.M. Souriau, among many others, began to study various topics in physics using methods of differential geometry. This "geometrization" provides a way to analyze the features of the physical systems from a global viewpoint, thus obtaining qualitative properties that help us in the integration of the equations that describe them. Since then, there has been a strong development in the intrinsic treatment of a variety of topics in theoretical physics, applied mathematics and control theory using methods of differential geometry. Most of the work done in geometrical physics since its first days has been devoted to study first-order theories, that is, those theories whose physical information depends on (at most) first-order derivatives of the generalized coordinates of position (velocities). However, there are theories in physics in which the physical information depends explicitly on accelerations or higher-order derivatives of the generalized coordinates of position, and thus more sophisticated geometrical tools are needed to model them acurately. In this Ph.D. Thesis we pretend to give a geometrical description of some of these higher-order theories. In particular, we focus on dynamical systems and field theories whose dynamical information can be given in terms of a Lagrangian function, or a Hamiltonian that admits Lagrangian counterpart. More precisely, we will use the Lagrangian-Hamiltonian unified approach in order to develop a geometric framework for autonomous and non-autonomous higher-order dynamical system, and for second-order field theories. This geometric framework will be used to study several relevant physical examples and applications, such as the Hamilton-Jacobi theory for higher-order mechanical systems, relativistic spin particles and deformation problems in mechanics, and the Korteweg-de Vries equation and other systems in field theory.
La física geomètrica és una branca relativament jove de la matemàtica aplicada que es va iniciar als anys 60 i 70 qua A. Lichnerowicz, W.M. Tulczyjew and J.M. Souriau, entre molts altres, van començar a estudiar diversos problemes en física usant mètodes de geometria diferencial. Aquesta "geometrització" proporciona una manera d'analitzar les característiques dels sistemes físics des d'una perspectiva global, obtenint així propietats qualitatives que faciliten la integració de les equacions que els descriuen. D'ençà s'ha produït un fort desenvolupamewnt en el tractament intrínsic d'una gran varietat de problemes en física teòrica, matemàtica aplicada i teoria de control usant mètodes de geometria diferencial. Gran part del treball realitzat en la física geomètrica des dels seus primers dies s'ha dedicat a l'estudi de teories de primer ordre, és a dir, teories tals que la informació física depèn en, com a molt, derivades de primer ordre de les coordenades de posició generalitzades (velocitats). Tanmateix, hi ha teories en física en les que la informació física depèn de manera explícita en acceleracions o derivades d'ordre superior de les coordenades de posició generalitzades, requerint, per tant, d'eines geomètriques més sofisticades per a modelar-les de manera acurada. En aquesta Tesi Doctoral ens proposem donar una descripció geomètrica d'algunes d'aquestes teories. En particular, estudiarem sistemes dinàmics i teories de camps tals que la seva informació dinàmica ve donada en termes d'una funció lagrangiana, o d'un hamiltonià que prové d'un sitema lagrangià. Per a ser més precisos emprarem la formulació unificada Lagrangiana-Hamiltoniana per tal de desenvolupar marcs geomètrics per a sistemes dinàmics d'ordre superior autònoms i no autònoms, i per a teories de camps de segon ordre. Amb aquest marc geomètric estudiarem alguns exemples físics rellevants i algunes aplicacions, com la teoria de Hamilton-Jacobi per a sistemes mecànics d'ordre superior, partícules relativístiques amb spin i problemes de deformació en mecànica, i l'equació de Korteweg-de Vries i altres sistemes en teories de camps.
APA, Harvard, Vancouver, ISO, and other styles
14

"Floer homology on symplectic manifolds." 2008. http://library.cuhk.edu.hk/record=b5893711.

Full text
Abstract:
Kwong, Kwok Kun.
Thesis (M.Phil.)--Chinese University of Hong Kong, 2008.
Includes bibliographical references (leaves 105-109).
Abstracts in English and Chinese.
Abstract --- p.i
Acknowledgements --- p.iii
Introduction --- p.1
Chapter 1 --- Morse Theory --- p.4
Chapter 1.1 --- Introduction --- p.4
Chapter 1.2 --- Morse Homology --- p.11
Chapter 2 --- Symplectic Fixed Points and Arnold Conjecture --- p.24
Chapter 2.1 --- Introduction --- p.24
Chapter 2.2 --- The Variational Approach --- p.29
Chapter 2.3 --- Action Functional and Moduli Space --- p.30
Chapter 2.4 --- Construction of Floer Homology --- p.42
Chapter 3 --- Fredholm Theory --- p.46
Chapter 3.1 --- Fredholm Operator --- p.47
Chapter 3.2 --- The Linearized Operator --- p.48
Chapter 3.3 --- Maslov Index --- p.50
Chapter 3.4 --- Fredholm Index --- p.57
Chapter 4 --- Floer Homology --- p.75
Chapter 4.1 --- Transversality --- p.75
Chapter 4.2 --- Compactness and Gluing --- p.76
Chapter 4.3 --- Floer Homology --- p.88
Chapter 4.4 --- Invariance of Floer Homology --- p.90
Chapter 4.5 --- An Isomorphism Theorem --- p.98
Chapter 4.6 --- Further Applications --- p.103
Bibliography --- p.105
APA, Harvard, Vancouver, ISO, and other styles
15

Kulkarni, Dheeraj. "Relative Symplectic Caps, Fibered Knots And 4-Genus." Thesis, 2012. http://etd.iisc.ernet.in/handle/2005/2285.

Full text
Abstract:
The 4-genus of a knot in S3 is an important measure of complexity, related to the unknotting number. A fundamental result used to study the 4-genus and related invariants of homology classes is the Thom conjecture, proved by Kronheimer-Mrowka, and its symplectic extension due to Ozsv´ath-Szab´o, which say that closed symplectic surfaces minimize genus. In this thesis, we prove a relative version of the symplectic capping theorem. More precisely, suppose (X, ω) is a symplectic 4-manifold with contact type bounday ∂X and Σ is a symplectic surface in X such that ∂Σ is a transverse knot in ∂X. We show that there is a closed symplectic 4-manifold Y with a closed symplectic submanifold S such that the pair (X, Σ) embeds symplectically into (Y, S). This gives a proof of the relative version of Symplectic Thom Conjecture. We use this to study 4-genus of fibered knots in S3 . We also prove a relative version of the sufficiency part of Giroux’s criterion for Stein fillability, namely, we show that a fibered knot whose mondoromy is a product of positive Dehn twists bounds a symplectic surface in a Stein filling. We use this to study 4-genus of fibered knots in S3 . Using this result, we give a criterion for quasipostive fibered knots to be strongly quasipositive. Symplectic convexity disc bundles is a useful tool in constructing symplectic fillings of contact manifolds. We show the symplectic convexity of the unit disc bundle in a Hermitian holomorphic line bundle over a Riemann surface.
APA, Harvard, Vancouver, ISO, and other styles
16

"Selected topics in geometric analysis." 1998. http://library.cuhk.edu.hk/record=b5889724.

Full text
Abstract:
by Chow Ha Tak.
Thesis (M.Phil.)--Chinese University of Hong Kong, 1998.
Includes bibliographical references (leaves 96-97).
Abstract also in Chinese.
Chapter 1 --- The Laplacian on a Riemannian Manifold --- p.5
Chapter 1.1 --- Riemannian metrics --- p.5
Chapter 1.2 --- L2 Spaces of Functions and Forms --- p.6
Chapter 1.3 --- The Laplacian on Functions and Forms --- p.8
Chapter 2 --- Hodge Theory for Functions and Forms --- p.14
Chapter 2.1 --- Analytic Preliminaries --- p.14
Chapter 2.2 --- The Hodge Theorem for Functions --- p.20
Chapter 2.3 --- The Hodge Theorem for Forms --- p.27
Chapter 2.4 --- Regularity Results --- p.29
Chapter 2.5 --- The Kernel of the Laplacian on Forms --- p.33
Chapter 3 --- Fermion Calculus and Weitzenbock Formula --- p.36
Chapter 3.1 --- The Levi-Civita Connection --- p.36
Chapter 3.2 --- Fermion calculus --- p.39
Chapter 3.3 --- "Weitzenbock Formula, Bochner Formula and Garding's Inequality" --- p.53
Chapter 3.4 --- The Laplacian in Exponential Coordinates --- p.59
Chapter 4 --- The Construction of the Heat Kernel --- p.63
Chapter 4.1 --- Preliminary Results for the Heat Kernel --- p.63
Chapter 4.2 --- Construction of the Heat Kernel --- p.66
Chapter 4.2.1 --- Construction of the Parametrix --- p.66
Chapter 4.2.2 --- The Heat Kernel for Functions --- p.70
Chapter 4.2.3 --- The Heat Kernel for Forms --- p.76
Chapter 4.3 --- The Asymptotics of the Heat Kernel --- p.77
Chapter 5 --- The Heat Equation Approach to the Chern-Gauss- Bonnet Theorem --- p.82
Chapter 5.1 --- The Heat Equation Approach --- p.82
Chapter 5.2 --- Proof of the Chern-Gauss-Bonnet Theorem --- p.85
Chapter 5.3 --- Introduction to Atiyah-Singer Index Theorem --- p.87
Chapter 5.3.1 --- A Survey of Characteristic Forms --- p.87
Chapter 5.3.2 --- The Hirzenbruch Signature Theorem --- p.90
Chapter 5.3.3 --- The Atiyah-Singer Index Theorem --- p.93
Bibliography
Notation index
APA, Harvard, Vancouver, ISO, and other styles
17

Tshilombo, Mukinayi Hermenegilde. "Cohomologies on sympletic quotients of locally Euclidean Frolicher spaces." Thesis, 2015. http://hdl.handle.net/10500/19942.

Full text
Abstract:
This thesis deals with cohomologies on the symplectic quotient of a Frölicher space which is locally diffeomorphic to a Euclidean Frölicher subspace of Rn of constant dimension equal to n. The symplectic reduction under consideration in this thesis is an extension of the Marsden-Weinstein quotient (also called, the reduced space) well-known from the finite-dimensional smooth manifold case. That is, starting with a proper and free action of a Frölicher-Lie-group on a locally Euclidean Frölicher space of finite constant dimension, we study the smooth structure and the topology induced on a small subspace of the orbit space. It is on this topological space that we will construct selected cohomologies such as : sheaf cohomology, Alexander-Spanier cohomology, singular cohomology, ~Cech cohomology and de Rham cohomology. Some natural questions that will be investigated are for instance: the impact of the symplectic structure on these di erent cohomologies; the cohomology that will give a good description of the topology on the objects of category of Frölicher spaces; the extension of the de Rham cohomology theorem in order to establish an isomorphism between the five cohomologies. Beside the algebraic, topological and geometric study of these new objects, the thesis contains a modern formalism of Hamiltonian mechanics on the reduced space under symplectic and Poisson structures.
Mathematical Sciences
D. Phil. (Mathematics)
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography