Dissertations / Theses on the topic 'Symplectic manifolds Hodge theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 17 dissertations / theses for your research on the topic 'Symplectic manifolds Hodge theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Callander, Brian 1986. "Lefschetz fibrations = Fibrações de Lefschetz." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307041.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-23T08:45:07Z (GMT). No. of bitstreams: 1 Callander_Brian_M.pdf: 1926930 bytes, checksum: 341dd0f9759ced382e138cd14fc4ae2c (MD5) Previous issue date: 2013
Resumo: O propósito desta tese é estudar fibrações de Lefschetz simpléticas, nas quais os ciclos evanescentes são subvariedades Lagrangianas das fibras. Para a descrição da teoria de interseção dos ciclos evanescentes utilizamos cohomologia de Floer Lagrangiana, cujo conceito revemos nesta tese. Apresentamos três exemplos principais e de caráteres distintos: (1) twists de Dehn generalizados, (2) o "espelho" da reta projetiva, e (3) uma fibração numa órbita adjunta de sl(3,C). O terceiro destes exemplos é original e utiliza um teorema recente de Gasparim- Grama-San Martin
Abstract: The objective of this thesis is to study symplectic Lefschetz fibrations, in which the vanishing cycles are Lagrangian submanifolds of the fibres. In order to describe the intersection theory of vanishing cycles we use Lagrangian intersection Floer cohomology, which we review. We present three main examples of distinct characters: (1) generalized Dehn twists, (2) the "mirror" of the projective line, and (3) a fibration on an adjoint orbit of sl(3,C). The third of these examples is original and uses a recent theorem of Gasparim- Grama-San Martin
Mestrado
Matematica
Mestre em Matemática
Boalch, Philip. "Geometry of moduli spaces of meromorphic connections on curves, Stokes data, wild nonabelian Hodge theory, hyperkahler manifolds, isomonodromic deformations, Painleve equations, and relations to Lie theory." Habilitation à diriger des recherches, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00768643.
Full textHe, Jian. "Symplectic field theory of subcritical Stein manifolds /." May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Full textCattaneo, Alberto. "Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds." Thesis, Poitiers, 2018. http://www.theses.fr/2018POIT2322/document.
Full textWe study automorphisms of irreducible holomorphic symplectic manifolds of type K3^[n], i.e. manifolds which are deformation equivalent to the Hilbert scheme of n points on a K3 surface, for some n > 1. In the first part of the thesis we describe the automorphism group of the Hilbert scheme of n points on a generic projective K3 surface, i.e. a K3 surface whose Picard lattice is generated by a single ample line bundle. We show that, if it is not trivial, the automorphism group is generated by a non-symplectic involution, whose existence depends on some arithmetic conditions involving the number of points n and the polarization of the surface. We also determine necessary and sufficient conditions on the Picard lattice of the Hilbert scheme for the existence of the involution.In the second part of the thesis we study non-symplectic automorphisms of prime order on manifolds of type K3^[n]. We investigate the properties of the invariant lattice and its orthogonal complement inside the second cohomology lattice of the manifold, providing a classification of their isometry classes. We then approach the problem of constructing examples (or at least proving the existence) of manifolds of type K3^[n] with a non-symplectic automorphism inducing on cohomology each specific action in our classification. In the case of involutions, and of automorphisms of odd prime order for n=3,4, we are able to realize all possible cases. In order to do so, we present a new non-symplectic automorphism of order three on a ten-dimensional family of Lehn-Lehn-Sorger-van Straten eightfolds of type K3^[4]. Finally, for n < 6 we describe deformation families of large dimension of manifolds of type K3^[n] equipped with a non-symplectic involution
Shamoto, Yota. "Hodge-Tate conditions for Landau-Ginzburg models." Kyoto University, 2018. http://hdl.handle.net/2433/232220.
Full textSchulze, Bert-Wolfgang, and Nikolai N. Tarkhanov. "Elliptic complexes of pseudodifferential operators on manifolds with edges." Universität Potsdam, 1998. http://opus.kobv.de/ubp/volltexte/2008/2525/.
Full textMoreno, Agustin. "Algebraic Torsion in Higher-Dimensional Contact Manifolds." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/19849.
Full textWe construct examples in any odd dimension of contact manifolds with finite and non-zero algebraic torsion (in the sense of Latschev-Wendl), which are therefore tight and do not admit strong symplectic fillings. We prove that Giroux torsion implies algebraic 1-torsion in any odd dimension, which proves a conjecture of Massot-Niederkrüger-Wendl. We construct infinitely many non-diffeomorphic examples of 5-dimensional contact manifolds which are tight, admit no strong fillings, and do not have Giroux torsion. We obtain obstruction results for symplectic cobordisms, for which we give a proof not relying on SFT machinery. We give a tentative definition of a higher-dimensional spinal open book decomposition, based on the 3-dimensional one of Lisi-van Horn Morris-Wendl. An appendix written in co-authorship with Richard Siefring gives a basic outline of the intersection theory for punctured holomorphic curves and hypersurfaces, which generalizes his 3-dimensional results to higher dimensions. From the intersection theory we obtain an application to codimension-2 holomorphic foliations, which we use to restrict the behaviour of holomorphic curves in our examples.
Karlsson, Cecilia. "Orienting Moduli Spaces of Flow Trees for Symplectic Field Theory." Doctoral thesis, Uppsala universitet, Algebra och geometri, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-269551.
Full textRussell, Neil Eric. "Aspects of the symplectic and metric geometry of classical and quantum physics." Thesis, Rhodes University, 1993. http://hdl.handle.net/10962/d1005237.
Full textGier, Megan E. "EIGENVALUE MULTIPLICITES OF THE HODGE LAPLACIAN ON COEXACT 2-FORMS FOR GENERIC METRICS ON 5-MANIFOLDS." UKnowledge, 2014. http://uknowledge.uky.edu/math_etds/14.
Full textOtto, Michael. "Symplectic convexity theorems and applications to the structure theory of semisimple Lie groups." Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1084986339.
Full textTitle from first page of PDF file. Document formatted into pages; contains v, 88 p. Includes bibliographical references (p. 87-88). Available online via OhioLINK's ETD Center
Alves, Leonardo Soriani 1991. "Geometria complexa generalizada e tópicos relacionados." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/305829.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-27T10:27:44Z (GMT). No. of bitstreams: 1 Alves_LeonardoSoriani_M.pdf: 542116 bytes, checksum: b4db821b86b39eb2b221b4f63a4c9829 (MD5) Previous issue date: 2015
Resumo: Estudamos geometria complexa generalizada, que tem como casos particulares as geometrias complexa e simplética. Começamos com os seus fundamentos algébricos num espaço vetorial e transportamos essas noções para variedades. Estudamos o colchete de Courant na soma direta dos fibrados tangente e cotangente de uma variedade, que é essencial para definir a integrabilidade das estruturas complexas generalizadas. Verificamos que em nilvariedades de dimensão 6 sempre existe estrutura complexa generalizada invariante à esquerda, ainda que algumas delas não admitam estrutura complexa ou simplética. Estudamos duas noções de T-dualidade e suas relações com geometria complexa generalizada. Por fim recapitulamos a simetria do espelho para curvas elípticas e obtemos uma manifestação de simetria do espelho através de geometria complexa generalizada
Abstract: We study generalized complex geometry, which encompasses complex and symplectic geometry as particular cases. We begin with the algebraic basics on a vector space and then we transport these concepts to manifolds. We study the Courant bracket on the direct sum of tangent and cotangent bundles of a manifold, which is essential to define the integrability of the generalized complex structures. We check that on every $6$ dimensional nilmanifolds there is a left invariant generalized complex structure, even though some of them do not admit complex or symplectic structure. We study two notions of T-dualidade and its relations to generalized complex geometry. We recall mirror symmetry for elliptic curves and derive a manifestation of mirror symmetry from generalized complex geometry
Mestrado
Matematica
Mestre em Matemática
Prieto, Martínez Pere Daniel. "Geometrical structures of higher-order dynamical systems and field theories." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/284215.
Full textLa física geomètrica és una branca relativament jove de la matemàtica aplicada que es va iniciar als anys 60 i 70 qua A. Lichnerowicz, W.M. Tulczyjew and J.M. Souriau, entre molts altres, van començar a estudiar diversos problemes en física usant mètodes de geometria diferencial. Aquesta "geometrització" proporciona una manera d'analitzar les característiques dels sistemes físics des d'una perspectiva global, obtenint així propietats qualitatives que faciliten la integració de les equacions que els descriuen. D'ençà s'ha produït un fort desenvolupamewnt en el tractament intrínsic d'una gran varietat de problemes en física teòrica, matemàtica aplicada i teoria de control usant mètodes de geometria diferencial. Gran part del treball realitzat en la física geomètrica des dels seus primers dies s'ha dedicat a l'estudi de teories de primer ordre, és a dir, teories tals que la informació física depèn en, com a molt, derivades de primer ordre de les coordenades de posició generalitzades (velocitats). Tanmateix, hi ha teories en física en les que la informació física depèn de manera explícita en acceleracions o derivades d'ordre superior de les coordenades de posició generalitzades, requerint, per tant, d'eines geomètriques més sofisticades per a modelar-les de manera acurada. En aquesta Tesi Doctoral ens proposem donar una descripció geomètrica d'algunes d'aquestes teories. En particular, estudiarem sistemes dinàmics i teories de camps tals que la seva informació dinàmica ve donada en termes d'una funció lagrangiana, o d'un hamiltonià que prové d'un sitema lagrangià. Per a ser més precisos emprarem la formulació unificada Lagrangiana-Hamiltoniana per tal de desenvolupar marcs geomètrics per a sistemes dinàmics d'ordre superior autònoms i no autònoms, i per a teories de camps de segon ordre. Amb aquest marc geomètric estudiarem alguns exemples físics rellevants i algunes aplicacions, com la teoria de Hamilton-Jacobi per a sistemes mecànics d'ordre superior, partícules relativístiques amb spin i problemes de deformació en mecànica, i l'equació de Korteweg-de Vries i altres sistemes en teories de camps.
"Floer homology on symplectic manifolds." 2008. http://library.cuhk.edu.hk/record=b5893711.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 2008.
Includes bibliographical references (leaves 105-109).
Abstracts in English and Chinese.
Abstract --- p.i
Acknowledgements --- p.iii
Introduction --- p.1
Chapter 1 --- Morse Theory --- p.4
Chapter 1.1 --- Introduction --- p.4
Chapter 1.2 --- Morse Homology --- p.11
Chapter 2 --- Symplectic Fixed Points and Arnold Conjecture --- p.24
Chapter 2.1 --- Introduction --- p.24
Chapter 2.2 --- The Variational Approach --- p.29
Chapter 2.3 --- Action Functional and Moduli Space --- p.30
Chapter 2.4 --- Construction of Floer Homology --- p.42
Chapter 3 --- Fredholm Theory --- p.46
Chapter 3.1 --- Fredholm Operator --- p.47
Chapter 3.2 --- The Linearized Operator --- p.48
Chapter 3.3 --- Maslov Index --- p.50
Chapter 3.4 --- Fredholm Index --- p.57
Chapter 4 --- Floer Homology --- p.75
Chapter 4.1 --- Transversality --- p.75
Chapter 4.2 --- Compactness and Gluing --- p.76
Chapter 4.3 --- Floer Homology --- p.88
Chapter 4.4 --- Invariance of Floer Homology --- p.90
Chapter 4.5 --- An Isomorphism Theorem --- p.98
Chapter 4.6 --- Further Applications --- p.103
Bibliography --- p.105
Kulkarni, Dheeraj. "Relative Symplectic Caps, Fibered Knots And 4-Genus." Thesis, 2012. http://etd.iisc.ernet.in/handle/2005/2285.
Full text"Selected topics in geometric analysis." 1998. http://library.cuhk.edu.hk/record=b5889724.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 1998.
Includes bibliographical references (leaves 96-97).
Abstract also in Chinese.
Chapter 1 --- The Laplacian on a Riemannian Manifold --- p.5
Chapter 1.1 --- Riemannian metrics --- p.5
Chapter 1.2 --- L2 Spaces of Functions and Forms --- p.6
Chapter 1.3 --- The Laplacian on Functions and Forms --- p.8
Chapter 2 --- Hodge Theory for Functions and Forms --- p.14
Chapter 2.1 --- Analytic Preliminaries --- p.14
Chapter 2.2 --- The Hodge Theorem for Functions --- p.20
Chapter 2.3 --- The Hodge Theorem for Forms --- p.27
Chapter 2.4 --- Regularity Results --- p.29
Chapter 2.5 --- The Kernel of the Laplacian on Forms --- p.33
Chapter 3 --- Fermion Calculus and Weitzenbock Formula --- p.36
Chapter 3.1 --- The Levi-Civita Connection --- p.36
Chapter 3.2 --- Fermion calculus --- p.39
Chapter 3.3 --- "Weitzenbock Formula, Bochner Formula and Garding's Inequality" --- p.53
Chapter 3.4 --- The Laplacian in Exponential Coordinates --- p.59
Chapter 4 --- The Construction of the Heat Kernel --- p.63
Chapter 4.1 --- Preliminary Results for the Heat Kernel --- p.63
Chapter 4.2 --- Construction of the Heat Kernel --- p.66
Chapter 4.2.1 --- Construction of the Parametrix --- p.66
Chapter 4.2.2 --- The Heat Kernel for Functions --- p.70
Chapter 4.2.3 --- The Heat Kernel for Forms --- p.76
Chapter 4.3 --- The Asymptotics of the Heat Kernel --- p.77
Chapter 5 --- The Heat Equation Approach to the Chern-Gauss- Bonnet Theorem --- p.82
Chapter 5.1 --- The Heat Equation Approach --- p.82
Chapter 5.2 --- Proof of the Chern-Gauss-Bonnet Theorem --- p.85
Chapter 5.3 --- Introduction to Atiyah-Singer Index Theorem --- p.87
Chapter 5.3.1 --- A Survey of Characteristic Forms --- p.87
Chapter 5.3.2 --- The Hirzenbruch Signature Theorem --- p.90
Chapter 5.3.3 --- The Atiyah-Singer Index Theorem --- p.93
Bibliography
Notation index
Tshilombo, Mukinayi Hermenegilde. "Cohomologies on sympletic quotients of locally Euclidean Frolicher spaces." Thesis, 2015. http://hdl.handle.net/10500/19942.
Full textMathematical Sciences
D. Phil. (Mathematics)