Academic literature on the topic 'Symplectization'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Symplectization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Symplectization"

1

SEIDEL, PAUL. "SIMPLE EXAMPLES OF DISTINCT LIOUVILLE TYPE SYMPLECTIC STRUCTURES." Journal of Topology and Analysis 03, no. 01 (2011): 1–5. http://dx.doi.org/10.1142/s1793525311000465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

GÜMRAL, Hasan. "Lagrangian description, symplectization, and Eulerian dynamics of incompressible fluids." TURKISH JOURNAL OF MATHEMATICS 40 (2016): 925–40. http://dx.doi.org/10.3906/mat-1410-38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tomassini, Giuseppe, and Sergio Venturini. "Adapted complex tubes on the symplectization of pseudo-Hermitian manifolds." Archiv der Mathematik 96, no. 1 (2010): 77–83. http://dx.doi.org/10.1007/s00013-010-0185-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bibikov, Pavel. "On symplectization of 1-jet space and differential invariants of point pseudogroup." Journal of Geometry and Physics 85 (November 2014): 81–87. http://dx.doi.org/10.1016/j.geomphys.2014.05.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Neiss, Robert Axel. "Generalized Symplectization of Vlasov Dynamics and Application to the Vlasov–Poisson System." Archive for Rational Mechanics and Analysis 231, no. 1 (2018): 115–51. http://dx.doi.org/10.1007/s00205-018-1275-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

OH, YONG-GEUN, and RUI WANG. "ANALYSIS OF CONTACT CAUCHY–RIEMANN MAPS II: CANONICAL NEIGHBORHOODS AND EXPONENTIAL CONVERGENCE FOR THE MORSE–BOTT CASE." Nagoya Mathematical Journal 231 (May 15, 2017): 128–223. http://dx.doi.org/10.1017/nmj.2017.17.

Full text
Abstract:
This is a sequel to the papers Oh and Wang (Real and Complex Submanifolds, Springer Proceedings in Mathematics and Statistics 106 (2014), 43–63, eds. by Y.-J. Suh and et al. for ICM-2014 satellite conference, Daejeon, Korea, August 2014; arXiv:1212.4817; Analysis of contact Cauchy–Riemann maps I: a priori$C^{k}$estimates and asymptotic convergence, submitted, preprint, 2012, arXiv:1212.5186v3). In Oh and Wang (Real and Complex Submanifolds, Springer Proceedings in Mathematics and Statistics 106 (2014), 43–63, eds. by Y.-J. Suh and et al. for ICM-2014 satellite conference, Daejeon, Korea, Augus
APA, Harvard, Vancouver, ISO, and other styles
7

Fitzpatrick, Sean. "On the Geometry of Almost -Manifolds." ISRN Geometry 2011 (December 13, 2011): 1–12. http://dx.doi.org/10.5402/2011/879042.

Full text
Abstract:
An -structure on a manifold is an endomorphism field satisfying . We call an f-structure regular if the distribution is involutive and regular, in the sense of Palais. We show that when a regular f-structure on a compact manifold M is an almost -structure, it determines a torus fibration of M over a symplectic manifold. When rank , this result reduces to the Boothby-Wang theorem. Unlike similar results for manifolds with -structure or -structure, we do not assume that the f-structure is normal. We also show that given an almost -structure, we obtain an associated Jacobi structure, as well as a
APA, Harvard, Vancouver, ISO, and other styles
8

van der Schaft, Arjan, and Bernhard Maschke. "Geometry of Thermodynamic Processes." Entropy 20, no. 12 (2018): 925. http://dx.doi.org/10.3390/e20120925.

Full text
Abstract:
Since the 1970s, contact geometry has been recognized as an appropriate framework for the geometric formulation of thermodynamic systems, and in particular their state properties. More recently it has been shown how the symplectization of contact manifolds provides a new vantage point; enabling, among other things, to switch easily between the energy and entropy representations of a thermodynamic system. In the present paper, this is continued towards the global geometric definition of a degenerate Riemannian metric on the homogeneous Lagrangian submanifold describing the state properties, whi
APA, Harvard, Vancouver, ISO, and other styles
9

MÜLLER, STEFAN, and PETER SPAETH. "Helicity of vector fields preserving a regular contact form and topologically conjugate smooth dynamical systems." Ergodic Theory and Dynamical Systems 33, no. 5 (2012): 1550–83. http://dx.doi.org/10.1017/s0143385712000387.

Full text
Abstract:
AbstractWe compute the helicity of a vector field preserving a regular contact form on a closed three-dimensional manifold, and improve results of Gambaudo and Ghys [Enlacements asymptotiques. Topology 36(6) (1997), 1355–1379] relating the helicity of the suspension of a surface isotopy to the Calabi invariant of the isotopy. Based on these results, we provide positive answers to two questions posed by Arnold in [The asymptotic Hopf invariant and its applications. Selecta Math. Soviet. 5(4) (1986), 327–345]. In the presence of a regular contact form that is also preserved, the helicity extends
APA, Harvard, Vancouver, ISO, and other styles
10

Courte, Sylvain. "Contact manifolds with symplectomorphic symplectizations." Geometry & Topology 18, no. 1 (2014): 1–15. http://dx.doi.org/10.2140/gt.2014.18.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Symplectization"

1

Courte, Sylvain. "H-cobordismes en géométrie symplectique." Thesis, Lyon, École normale supérieure, 2015. http://www.theses.fr/2015ENSL0991/document.

Full text
Abstract:
À toute variété de contact, on peut associer canoniquement une variété symplectique appelée sa symplectisation de sorte que la géométrie de contact peut se reformuler en termes de géométrie symplectique équivariante. Au sujet de cette construction fondamentale, une question basique restait ouverte : si deux variété de contact ont des symplectisations isomorphes sont-elles isomorphes ? On construit dans cette thèse des contre-exemples à cette question. Il existe en effet, en toute dimension impaire supérieure ou égale à 5, des variétés de contact non difféomorphes admettant pourtant des symplec
APA, Harvard, Vancouver, ISO, and other styles
2

Doicu, Alexandru [Verfasser], and Kai [Akademischer Betreuer] Cieliebak. "Compactness Results for H-holomorphic Curves in Symplectizations / Alexandru Doicu ; Betreuer: Kai Cieliebak." Augsburg : Universität Augsburg, 2018. http://d-nb.info/1170582966/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Paulo, Naiara Vergian de. "Sistemas de seções transversais próximos a níveis críticos de sistemas Hamiltonianos em $\\mathbb{R}^4$." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-01072014-125659/.

Full text
Abstract:
Neste trabalho estudamos dinâmica Hamiltoniana em $\\mathbb{R}^4$ restrita a níveis de energia próximos a níveis críticos. Mais precisamente, consideramos uma função Hamiltoniana $H: \\mathbb{R}^4 \\to \\mathbb{R}$ que possui um ponto de equilíbrio do tipo sela-centro $p_c \\in H^{-1}(0)$ e assumimos que $p_c$ pertence a um conjunto singular estritamente convexo $S_0 \\subset H^{-1}(0)$. Então, mostramos que os níveis de energia $H^{-1}(E)$, com $E>0$ suficientemente pequeno, contêm uma $3$-bola fechada $S_E$ próxima a $S_0$ que admite um sistema de seções transversais $F_E$, chamado folheação
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Symplectization"

1

Hofer, H., K. Wysocki, and E. Zehnder. "Properties of Pseudoholomorphic Curves in Symplectizations III: Fredholm Theory." In Topics in Nonlinear Analysis. Birkhäuser Basel, 1999. http://dx.doi.org/10.1007/978-3-0348-8765-6_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ma, Renyi. "Exact Lagrangian Submanifolds In Symplectizations." In Progress In Nonlinear Analysis. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792730_0018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!