Journal articles on the topic 'Synaptic learning mechanisms'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Synaptic learning mechanisms.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Li, Y., E. G. Meloni, W. A. Carlezon, et al. "Learning and reconsolidation implicate different synaptic mechanisms." Proceedings of the National Academy of Sciences 110, no. 12 (2013): 4798–803. http://dx.doi.org/10.1073/pnas.1217878110.
Full textMameli, Manuel, and Christian Lüscher. "Synaptic plasticity and addiction: Learning mechanisms gone awry." Neuropharmacology 61, no. 7 (2011): 1052–59. http://dx.doi.org/10.1016/j.neuropharm.2011.01.036.
Full textDOUPE, ALLISON J., MICHELE M. SOLIS, RHEA KIMPO, and CHARLOTTE A. BOETTIGER. "Cellular, Circuit, and Synaptic Mechanisms in Song Learning." Annals of the New York Academy of Sciences 1016, no. 1 (2004): 495–523. http://dx.doi.org/10.1196/annals.1298.035.
Full textCarey, Megan R. "Synaptic mechanisms of sensorimotor learning in the cerebellum." Current Opinion in Neurobiology 21, no. 4 (2011): 609–15. http://dx.doi.org/10.1016/j.conb.2011.06.011.
Full textSánchez-Montañés, Manuel A., Paul F. M. J. Verschure, and Peter König. "Local and Global Gating of Synaptic Plasticity." Neural Computation 12, no. 3 (2000): 519–29. http://dx.doi.org/10.1162/089976600300015682.
Full textSaar, Drorit, Iris Reuveni, and Edi Barkai. "Mechanisms underlying rule learning-induced enhancement of excitatory and inhibitory synaptic transmission." Journal of Neurophysiology 107, no. 4 (2012): 1222–29. http://dx.doi.org/10.1152/jn.00356.2011.
Full textOrpwood, Roger D. "Mechanisms of association learning in the post-synaptic neurone." Journal of Theoretical Biology 143, no. 2 (1990): 145–62. http://dx.doi.org/10.1016/s0022-5193(05)80265-6.
Full textNORDEEN, KATHY W., and ERNEST J. NORDEEN. "Synaptic and Molecular Mechanisms Regulating Plasticity during Early Learning." Annals of the New York Academy of Sciences 1016, no. 1 (2004): 416–37. http://dx.doi.org/10.1196/annals.1298.018.
Full textIsokawa, Masako. "Cellular Signal Mechanisms of Reward-Related Plasticity in the Hippocampus." Neural Plasticity 2012 (2012): 1–18. http://dx.doi.org/10.1155/2012/945373.
Full textKfir, Adi, Naama Ohad-Giwnewer, Luna Jammal, Drorit Saar, David Golomb, and Edi Barkai. "Learning-induced modulation of the GABAB-mediated inhibitory synaptic transmission: mechanisms and functional significance." Journal of Neurophysiology 111, no. 10 (2014): 2029–38. http://dx.doi.org/10.1152/jn.00004.2014.
Full textTan, Han L., Shu-Ling Chiu, Qianwen Zhu, and Richard L. Huganir. "GRIP1 regulates synaptic plasticity and learning and memory." Proceedings of the National Academy of Sciences 117, no. 40 (2020): 25085–91. http://dx.doi.org/10.1073/pnas.2014827117.
Full textAvchalumov, Yosef, and Chitra D. Mandyam. "Synaptic Plasticity and its Modulation by Alcohol." Brain Plasticity 6, no. 1 (2020): 103–11. http://dx.doi.org/10.3233/bpl-190089.
Full textZakharova, E. I., Z. I. Storozheva, A. M. Dudchenko, and A. A. Kubatiev. "Chronic Cerebral Ischaemia Forms New Cholinergic Mechanisms of Learning and Memory." International Journal of Alzheimer's Disease 2010 (2010): 1–17. http://dx.doi.org/10.4061/2010/954589.
Full textLovinger, David M., and Karina P. Abrahao. "Synaptic plasticity mechanisms common to learning and alcohol use disorder." Learning & Memory 25, no. 9 (2018): 425–34. http://dx.doi.org/10.1101/lm.046722.117.
Full textLombroso, Paul, and Marilee Ogren. "Learning and Memory, Part II: Molecular Mechanisms of Synaptic Plasticity." Journal of the American Academy of Child & Adolescent Psychiatry 48, no. 1 (2009): 5–9. http://dx.doi.org/10.1097/chi.0b013e318190c4b3.
Full textHüning, Harald, Helmut Glünder, and Günther Palm. "Synaptic Delay Learning in Pulse-Coupled Neurons." Neural Computation 10, no. 3 (1998): 555–65. http://dx.doi.org/10.1162/089976698300017665.
Full textTriesch, Jochen. "Synergies Between Intrinsic and Synaptic Plasticity Mechanisms." Neural Computation 19, no. 4 (2007): 885–909. http://dx.doi.org/10.1162/neco.2007.19.4.885.
Full textBazzari, Amjad, and H. Parri. "Neuromodulators and Long-Term Synaptic Plasticity in Learning and Memory: A Steered-Glutamatergic Perspective." Brain Sciences 9, no. 11 (2019): 300. http://dx.doi.org/10.3390/brainsci9110300.
Full textXue, Renhao, David A. Ruhl, Joseph S. Briguglio, Alexander G. Figueroa, Robert A. Pearce, and Edwin R. Chapman. "Doc2-mediated superpriming supports synaptic augmentation." Proceedings of the National Academy of Sciences 115, no. 24 (2018): E5605—E5613. http://dx.doi.org/10.1073/pnas.1802104115.
Full textSilva, Mariline M., Beatriz Rodrigues, Joana Fernandes, et al. "MicroRNA-186-5p controls GluA2 surface expression and synaptic scaling in hippocampal neurons." Proceedings of the National Academy of Sciences 116, no. 12 (2019): 5727–36. http://dx.doi.org/10.1073/pnas.1900338116.
Full textBenjamin, Paul, R. "Non-synaptic neuronal mechanisms of learning and memory in gastropod molluscs." Frontiers in Bioscience Volume, no. 13 (2008): 4051. http://dx.doi.org/10.2741/2993.
Full textReuveni, Iris, Longnian Lin, and Edi Barkai. "Complex-learning Induced Modifications in Synaptic Inhibition: Mechanisms and Functional Significance." Neuroscience 381 (June 2018): 105–14. http://dx.doi.org/10.1016/j.neuroscience.2018.04.023.
Full textLuchkina, Natalia V., and Vadim Y. Bolshakov. "Mechanisms of fear learning and extinction: synaptic plasticity–fear memory connection." Psychopharmacology 236, no. 1 (2018): 163–82. http://dx.doi.org/10.1007/s00213-018-5104-4.
Full textWeitlauf, Carl, and Danny Winder. "Calcineurin, Synaptic Plasticity, and Memory." Scientific World JOURNAL 1 (2001): 530–33. http://dx.doi.org/10.1100/tsw.2001.259.
Full textGiachello, Carlo Natale Giuseppe, Pier Giorgio Montarolo, and Mirella Ghirardi. "Synaptic Functions of Invertebrate Varicosities: What Molecular Mechanisms Lie Beneath." Neural Plasticity 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/670821.
Full textVolmer, Romain, Christine M. A. Prat, Gwendal Le Masson, André Garenne, and Daniel Gonzalez-Dunia. "Borna Disease Virus Infection Impairs Synaptic Plasticity." Journal of Virology 81, no. 16 (2007): 8833–37. http://dx.doi.org/10.1128/jvi.00612-07.
Full textSun, Linlin, Hang Zhou, Joseph Cichon, and Guang Yang. "Experience and sleep-dependent synaptic plasticity: from structure to activity." Philosophical Transactions of the Royal Society B: Biological Sciences 375, no. 1799 (2020): 20190234. http://dx.doi.org/10.1098/rstb.2019.0234.
Full textDur-e-Ahmad, Muhammad. "MODELING CALCIUM DYNAMICS AND INHIBITION BASED SYNAPTIC PLASTICITY IN DENDRITIC SPINES." Mathematical Modelling and Analysis 19, no. 5 (2014): 676–95. http://dx.doi.org/10.3846/13926292.2014.980865.
Full textYu, Wendou, and Bingwei Lu. "Synapses and Dendritic Spines as Pathogenic Targets in Alzheimer’s Disease." Neural Plasticity 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/247150.
Full textHochner, Binyamin, Euan R. Brown, Marina Langella, Tal Shomrat, and Graziano Fiorito. "A Learning and Memory Area in the Octopus Brain Manifests a Vertebrate-Like Long-Term Potentiation." Journal of Neurophysiology 90, no. 5 (2003): 3547–54. http://dx.doi.org/10.1152/jn.00645.2003.
Full textGandolfi, Daniela, Albertino Bigiani, Carlo Adolfo Porro, and Jonathan Mapelli. "Inhibitory Plasticity: From Molecules to Computation and Beyond." International Journal of Molecular Sciences 21, no. 5 (2020): 1805. http://dx.doi.org/10.3390/ijms21051805.
Full textSchrader, Laura, and Michael J. Friedlander. "Developmental regulation of synaptic mechanisms that may contribute to learning and memory." Mental Retardation and Developmental Disabilities Research Reviews 5, no. 1 (1999): 60–71. http://dx.doi.org/10.1002/(sici)1098-2779(1999)5:1<60::aid-mrdd7>3.0.co;2-1.
Full textSchmidt, John T. "Activity-dependent synaptic stabilization in development and learning: How similar the mechanisms?" Cellular and Molecular Neurobiology 5, no. 1-2 (1985): 1–3. http://dx.doi.org/10.1007/bf00711082.
Full textThompson, John A., and David J. Perkel. "Endocannabinoids mediate synaptic plasticity at glutamatergic synapses on spiny neurons within a basal ganglia nucleus necessary for song learning." Journal of Neurophysiology 105, no. 3 (2011): 1159–69. http://dx.doi.org/10.1152/jn.00676.2010.
Full textZhuo, M. "Cortical Mechanisms for Emotional Fear and Chronic Pain." European Psychiatry 24, S1 (2009): 1. http://dx.doi.org/10.1016/s0924-9338(09)70318-9.
Full textMatamales, Miriam. "Neuronal activity-regulated gene transcription: how are distant synaptic signals conveyed to the nucleus?" F1000Research 1 (December 19, 2012): 69. http://dx.doi.org/10.12688/f1000research.1-69.v1.
Full textCuestas Torres, Diana Marcela, and Fernando P. Cardenas. "Synaptic plasticity in Alzheimer’s disease and healthy aging." Reviews in the Neurosciences 31, no. 3 (2020): 245–68. http://dx.doi.org/10.1515/revneuro-2019-0058.
Full textDeco, Gustavo, and Edmund T. Rolls. "Sequential Memory: A Putative Neural and Synaptic Dynamical Mechanism." Journal of Cognitive Neuroscience 17, no. 2 (2005): 294–307. http://dx.doi.org/10.1162/0898929053124875.
Full textAfonso, Pedro, Pasqualino De Luca, Rafael S. Carvalho, et al. "BDNF increases synaptic NMDA receptor abundance by enhancing the local translation of Pyk2 in cultured hippocampal neurons." Science Signaling 12, no. 586 (2019): eaav3577. http://dx.doi.org/10.1126/scisignal.aav3577.
Full textDrouet, Valérie, and Suzanne Lesage. "Synaptojanin 1 Mutation in Parkinson’s Disease Brings Further Insight into the Neuropathological Mechanisms." BioMed Research International 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/289728.
Full textBriz, Victor, and Michel Baudry. "Calpains: Master Regulators of Synaptic Plasticity." Neuroscientist 23, no. 3 (2016): 221–31. http://dx.doi.org/10.1177/1073858416649178.
Full textBen Zablah, Youssif, Haiwang Zhang, Radu Gugustea, and Zhengping Jia. "LIM-Kinases in Synaptic Plasticity, Memory, and Brain Diseases." Cells 10, no. 8 (2021): 2079. http://dx.doi.org/10.3390/cells10082079.
Full textBirbaumer, Niels, and Herta Flor. "A leg to stand on: Learning creates pain." Behavioral and Brain Sciences 20, no. 3 (1997): 441–42. http://dx.doi.org/10.1017/s0140525x97251496.
Full textHorn, David, Nir Levy, and Eytan Ruppin. "Memory Maintenance via Neuronal Regulation." Neural Computation 10, no. 1 (1998): 1–18. http://dx.doi.org/10.1162/089976698300017863.
Full textHulme, Sarah R., Owen D. Jones, Clarke R. Raymond, Pankaj Sah, and Wickliffe C. Abraham. "Mechanisms of heterosynaptic metaplasticity." Philosophical Transactions of the Royal Society B: Biological Sciences 369, no. 1633 (2014): 20130148. http://dx.doi.org/10.1098/rstb.2013.0148.
Full textSong, Chenghui, Julia A. Detert, Megha Sehgal, and James R. Moyer. "Trace fear conditioning enhances synaptic and intrinsic plasticity in rat hippocampus." Journal of Neurophysiology 107, no. 12 (2012): 3397–408. http://dx.doi.org/10.1152/jn.00692.2011.
Full textKida, Hiroyuki, and Dai Mitsushima. "Mechanisms of motor learning mediated by synaptic plasticity in rat primary motor cortex." Neuroscience Research 128 (March 2018): 14–18. http://dx.doi.org/10.1016/j.neures.2017.09.008.
Full textSandi, Carmen. "The Role and Mechanisms of Action of Glucocorticoid Involvement in Memory Storage." Neural Plasticity 6, no. 3 (1998): 41–52. http://dx.doi.org/10.1155/np.1998.41.
Full textHanley, J. G. "Molecular mechanisms for regulation of AMPAR trafficking by PICK1." Biochemical Society Transactions 34, no. 5 (2006): 931–35. http://dx.doi.org/10.1042/bst0340931.
Full textTanaka, Shigeru, and Masanobu Miyashita. "Constraint on the Number of Synaptic Inputs to a Visual Cortical Neuron Controls Receptive Field Formation." Neural Computation 21, no. 9 (2009): 2554–80. http://dx.doi.org/10.1162/neco.2009.04-08-752.
Full text