Academic literature on the topic 'Synchronous digital hierarchy (SDH)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Synchronous digital hierarchy (SDH).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Synchronous digital hierarchy (SDH)"
ElTaweel, Hamdy, Refat ElZonfoly, Ali ElMoghazy, and Hamdy ElMekaty. "PERFORMANCE ANALYSIS OF SYNCHRONOUS DIGITAL HIERARCHY (SDH) POINTERS." International Conference on Electrical Engineering 2, no. 2 (November 1, 1999): 36–43. http://dx.doi.org/10.21608/iceeng.1999.62272.
Full textElTaweel, Hamdy, Refat ElZonfoly, Ali ElMoghazy, and Hamdy ElMekaty. "IMPROVEMENTS IN ERROR IMMUNITY OF SYNCHRONOUS DIGITAL HIERARCHY (SDH) POINTERS." International Conference on Electrical Engineering 2, no. 2 (November 1, 1999): 44–51. http://dx.doi.org/10.21608/iceeng.1999.62274.
Full textzhang, Geng, Yang Wang, Huixia Ding, and Yidan Ren. "Design and Implementation of Power Communication System SDH Network Simulation Tool Based on EXATA." MATEC Web of Conferences 173 (2018): 01003. http://dx.doi.org/10.1051/matecconf/201817301003.
Full textSANTIAGO, A., J. P. CÁRDENAS, M. L. MOURONTE, V. FELIU, and R. M. BENITO. "MODELING THE TOPOLOGY OF SDH NETWORKS." International Journal of Modern Physics C 19, no. 12 (December 2008): 1809–20. http://dx.doi.org/10.1142/s0129183108013369.
Full textCÁRDENAS, J. P., M. L. MOURONTE, A. SANTIAGO, V. FELIU, and R. M. BENITO. "TOPOLOGICAL ANALYSIS OF COMPLEX OPTICAL TRANSPORT NETWORKS." International Journal of Bifurcation and Chaos 20, no. 03 (March 2010): 787–94. http://dx.doi.org/10.1142/s0218127410026071.
Full textAndri, Andri, and Rianto Nugroho. "Perencanaan Jaringan Komunikasi Backbone antara Bangka dan Belitung Menggunakan Radio Microwave SDH." Jurnal Ilmiah Giga 16, no. 1 (July 8, 2019): 40. http://dx.doi.org/10.47313/jig.v16i1.588.
Full textShao, Sujie, Qingtao Zeng, Shaoyong Guo, and Xuesong Qiu. "Random Violation Risk Degree Based Service Channel Routing Mechanism in Smart Grid." Energies 11, no. 11 (October 23, 2018): 2871. http://dx.doi.org/10.3390/en11112871.
Full textMeitasari, Dwi, and Rianto Nugroho. "Perencanaan Jaringan Komunikasi Antara Manado dan Sofifi menggunakan Radio Microwave." Jurnal Ilmiah Giga 19, no. 1 (March 25, 2019): 35. http://dx.doi.org/10.47313/jig.v19i1.562.
Full textZlatar, Slađan, Vlatko Lipovac, Adriana Lipovac, and Mirza Hamza. "Practical Consistency of Ethernet-Based QoS with Performance Prediction of Heterogeneous Microwave Radio Relay Transport Network." Electronics 10, no. 8 (April 12, 2021): 913. http://dx.doi.org/10.3390/electronics10080913.
Full textPuspita, Nurwendah, and Rianto Nugroho. "Perencanaan Jaringan Komunikasi Antara Patani Dan Sorong Menggunakan Radio Microwave." Jurnal Ilmiah Giga 19, no. 2 (March 25, 2019): 69. http://dx.doi.org/10.47313/jig.v19i2.567.
Full textDissertations / Theses on the topic "Synchronous digital hierarchy (SDH)"
Johnston, Robert Thomas. "A traffic generation algorithm for SDH digital cross-connects." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/15723.
Full textDurrett, Bret W. "Use of cross-connect clusters to optimize routing in STM-64-based SDH optical network systems." [Denver, Colo.] : Regis University, 2005. http://165.236.235.140/lib/BDurrett2005.pdf.
Full textAutry, Chris Brian. "Minimization of jitter in SDH/SONET networks via an all-digital desynchronizer." Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/15412.
Full textBrandt, A. D. "Implementation of an SDH simulator using SDR." Thesis, Stellenbosch : University of Stellenbosch, 2006. http://hdl.handle.net/10019.1/2467.
Full textA Synchronous Digital Hierarchy (SDH) point-to-point bi-directional link was implemented at a base Synchronous Transfer Mode level 1 (STM 1) signal rate. The full STM-1 multiplexer was implemented and the functional code developed to Virtual Container level 4 (VC4) level. The implementation was realized using a Software Defined Radio (SDR) architecture that managed and linked the SDH atomic units into a STM-1 SDH multiplexing structure. These atomic units have been well defined in recommendation G.707 [1]. The functional description of each unit was based on the G.783 [8] recommendation which specifies a library of basic building blocks and set of rules by which these atomic functions should be combined into various functional layers. These layers interconnect to ultimately form a bi-directional path in the SDH network. A SDH Management Sub network (SMS) was implemented using a graphical user interface to perform a monitoring function for the bi-directional link.
Lim, Wee Shoong. "An evaluation of management techniques for SONET/SDH Telecommunication networks." Thesis, Monterey California. Naval Postgraduate School, 2004. http://hdl.handle.net/10945/1389.
Full textA study of SONET network management applications and the load they impart to the network is conducted to provide a better understanding of the capability of various management approaches. In this study, a SONET network is set up in the Advanced Networking Laboratory of the Naval Postgraduate School using four Cisco ONS 15454s. Next, two Element Management Systems, the Cisco Transport Controller and the Cisco Transport Manager, are deployed onto the SONET network. Subsequently, the network traffic of the Element Management Systems is captured and analyzed using a packet analyzer. Link utilization of the two tools is computed using the first-order statistics of the captured traffic distributions. In addition, the Hurst parameter is estimated using the variance-index plot technique (which uses higher-orders statistics of the modeled distributions) to determine the captured traffic's degree of self-similarity. Finally, the calculated utilization is extrapolated to obtain the link utilization for 2500 network elements (the maximum number supported by the Cisco Transport Manager). The result obtained is useful in determining the maximum number of network elements (Cisco ONS 15454s) that the Cisco Transport Manager can support from a network loading point of view.
Civilian, Ministry of Defense, Singapore
Sholander, Peter Edward. "Characterization and minimization of jitter and wander in SDH networks." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/13461.
Full textCalvet, Jean-Thierry. "Synchronisation des réseaux optiques SDH." Paris 6, 2003. http://www.theses.fr/2003PA066039.
Full textSpadaro, Salvatore. "Enginyeria de tràfic en xarxes de transport òptiques per a entorns d'àrea metropolitana (RPR) i de gran abast (ASON)." Doctoral thesis, Universitat Politècnica de Catalunya, 2005. http://hdl.handle.net/10803/5980.
Full textComo consecuencia, ha surgido la necesidad de emigrar desde las actuales redes hacia una estructura más flexible y dinámica, optimizada para el transporte de tráfico de datos.
La evolución de las actuales redes de transporte incluye trasladar todas las funcionalidades de SDH (conmutación, monitorización de la calidad de la señal, protección frente a fallos) a nivel óptico. El resultado consistirá en una red de transporte óptica (Optical Transport Network, OTN) basada en tecnología DWDM, con Optical Cross Connects (OXC) para encaminar canales ópticos de forma permanente o conmutada (Automatic Switched Optical Network, ASON).
Uno de los principales problemas a solucionar por las operadoras de red es la eficiente gestión de la capacidad disponible, y así evitar por un lado la necesidad de sobredimensionar la red de transporte y por el otro optimizar la utilización de los recursos mediante la definición de estrategias de ingeniería de tráfico.
La introducción de las redes de transporte a conmutación automática (ASON), capaces de proporcionar conexiones ópticas bajo demanda, es considerada como la solución de red que puede proporcionar el rápido y flexible aprovisionamiento de ancho de banda. Tal funcionalidad, posible gracias a la definición de un plano de control basado en el paradigma GMPLS, puede ser usada para gestionar de manera dinámica los recursos disponibles, tanto a nivel SDH como a nivel óptico, respondiendo de forma eficiente a las fluctuaciones del tráfico generado por la red cliente.
Sin embargo, el problema que surge es el diseño de un mecanismo para disparar automáticamente las peticiones de establecimiento de circuitos SDH/canales ópticos conmutados.
En este sentido, la primera contribución de esta Tesis es el diseño de un mecanismo de disparo de peticiones de circuitos SDH/canales ópticos basado en la monitorización y predicción del tráfico de la red cliente (IP). Además, el mecanismo diseñado incluye la definición de políticas de ingeniería de tráfico para la optimización de la utilización del elevado ancho de banda proporcionado por las conexiones ópticas. Concretamente, el mecanismo diseñado se caracteriza por la interoperabilidad entre la capa cliente y la capa de transporte.
La Tesis incluye también una contribución sobre el diseño de una metodología para el dimensionado de la redes ASON, basada en la caracterización del tráfico de llegadas de peticiones de establecimiento de conexiones, mediante su valor medio y el factor de peakedness.
Por otro lado, la optimización de los recursos disponibles es muy crítica cuando se produce un fallo en la infraestructura de red debido a la necesidad de encontrar rutas alternativas para el tráfico afectado. Debido al gran volumen de tráfico a transportar, un fallo en la infraestructura de red puede tener graves consecuencias económicas. Por ejemplo, un corte de una única fibra óptica produce el fallo de todas las longitudes de onda que transporta; de esta manera la pérdida de cada longitud de onda operante a 2.5 Gbps o 10 Gbps puede resultar en el corte de un enorme número de conexiones en curso. Por lo tanto, a mayor capacidad, mayor es la importancia de la rapidez y rendimiento de los mecanismos de protección y recuperación.
Las estrategias de protección frente a fallos deben ser simples, minimizar las pérdidas de tráfico y deben utilizar eficientemente los recursos disponibles.
La recién estandardizada tecnología para redes de entornos metropolitanos, Resilient Packet Ring (RPR) se caracteriza por mecanismos de protección optimizados para minimizar el tiempo de recuperación en caso de fallos. Además, tales mecanismos no requieren la asignación a priori de recursos de red a utilizar solamente en caso de fallos.
Por lo que respecta a los mecanismos de recuperación, se puede optar por una estrategia de recuperación en una sola capa (single layer recovery) o alternativamente por una estrategia de recuperación en múltiples capas (multi-layer recovery), donde en la recuperación intervienen diferentes capas de la estructura de red. El esquema de recuperación multi-capas más fácil de implementar es el consistente en ejecutar los mecanismos de protección/recuperación de los distintos niveles de manera paralela e independiente. Esta estrategia no es, sin embargo, la más eficiente. La interoperabilidad entre los mecanismos de protección de las diferentes capas permite reaccionar más rápidamente a los fallos que se pueden producir.
La segunda contribución de esta Tesis es el diseño de una política de coordinación entre los mecanismos de protección proporcionados por RPR y los mecanismos de protección definidos por la capa óptica. Concretamente, la estrategia diseñada se basa en la interoperabilidad entre la capa RPR y la capa de transporte (OTN) para redes de entornos metropolitanos. La estrategia diseñada permite, además, la optimización de los recursos de red.
The main objective of the traffic engineering (TE) strategies is the efficient mapping of the actual traffic onto the available network resources.
Legacy Time Division Multiplexing-based networking architecture was basically designed to transport symmetric voice traffic. However, the volume of data traffic is increasing at explosive rate and already dominates the voice traffic. This is due to a progressive migration of many applications and services over the Internet Protocol (IP) and also to a deeper and deeper introduction of high-speed access technologies. Also there is the convergence towards the IP of real-time applications (i.e. multimedia applications) which have very strict QoS requirements.
The statistical characteristics of the data traffic are rather different from those of telephone traffic. Specifically, IP traffic is highly dynamic showing predictable and unpredictable traffic surges/peaks. Such surges are caused by unexpected events such as user' behaviours, weather conditions, accidents, fault, etc. This can cause significant fluctuations of the aggregated data traffic to be carried by the transport networks.
The current SONET/SDH transport networks (but also the incoming Optical Transport Networks) tend to be static, which means that connections (SONET/SDH circuits and light paths) are provided manually through the Network Management System. The manual configuration is time consuming, which means that weeks or even months are needed to provide high bandwidth connections.
The highly dynamic IP traffic pattern does not match with the static provisioning of capacity of the optical transport networks, leading to non-optimal utilization of the resources (i.e. network congestion or under-utilization of resources).
Thus, the problem that arises for Network Operators is how to efficiently manage the network resources in the transport network to efficiently respond to the changes in the traffic demands reaching, in such a way, traffic engineering objectives.
The introduction of the Automatic Switched Optical Networks (ASON), which is able to provide dynamically switched connections on demand, is recognized as the enabling solution to meet the requirement of fast and flexible end-to-end bandwidth provisioning. The automatic set up and tear down of optical connections can be used for the dynamic management of the transport network resources to track significant variations in the volume of the network client traffic. In such a context, a mechanism that triggers demands to set up/tear down light paths as a function of the variation of the client traffic to be transported is required.
The design of a multi-layer traffic engineering (MTE) strategy for IP/MPLS over ASON/GMPLS networks to face with the dynamic traffic demands is the first contribution of this Ph.D. Thesis. It has to be underlined that the policies for the set up of the light paths are out of the scope of this work. In fact, it is assumed that the set up/tear down of the switched connections is in charge of the ASON control plane, namely the GMPLS-based routing and signalling protocols.
As a second contribution, it is presented a practical approach for ASON networks dimensioning purposes based on the approximate characterization of the traffic arrival process, through its mean and the peakedness factor.
On the other hand, the optimization of the utilization of network resources is very critical when failures occur in the network as a consequence of the need of rerouting the affected traffic. The increase of the capacity and number of wavelengths that can be multiplexed onto the same fibre, each one carrying 2.5 or 10 Gbps client signals, implies that outages of the network infrastructure can have serious economical and social consequences.
Network recovery/resilience, i.e., the capability of the networks to efficiently recover from failures, has become of vital importance. Thus, optical transport networks need to be very robust to face failures. The protection mechanisms should be designed basically with the aim to be simple, to minimize the traffic losses and to optimize the utilization of the network resources.
Survivability strategies in current transport networks are based on the pre-allocation of network resources to be used only to switch (route) the affected traffic in case of failures.
In legacy multi-layer networks, each layer (e.g. IP, SDH) has its own protection mechanism built in, independent from the other layers. Network recovery basically relies on the SONET/SDH network layer. Indeed, different mechanisms, based on the protection approach, have been proposed that allow fast recovery within the target of 50 ms. Nevertheless, SONET/SDH protection is mainly limited to ring topologies and it is not able to distinguish between different priorities of traffic and it has not vision of higher layer failures.
The emerging packet-based Resilient Packet Ring (RPR) technology for metropolitan networks provides powerful protection mechanisms that minimize the time needed to restore the traffic without the pre-allocation of resources.
To face to failures, the resilience single-layer strategy (a single layer has the responsibility for the recovery) is very simple from the implementation point of view. However it may not be able to efficiently recover the network from all kind of failures that can occur. Therefore, multi-layer resilience (various network layers can participate to the recovery actions) provides better performance not only in terms of protection but also in terms of resources optimization.
Multi-layer resilience strategies require coordinating the recovery mechanisms provided by each layer. In such a context, another contribution of this Ph.D. Thesis is the design and evaluation of a multi-layer resilience mechanism to be used in the IP over RPR over intelligent optical transport network for metropolitan environment to efficiently face with a wide range of network outages, while optimizing the utilization of the network resources. Its novelty relies on the interworking required between the RPR and the optical transport layer.
Finally, the fourth contribution of the Thesis deals with the optimization of the bandwidth utlization of the RPR rings taking benefits from the automatic switching of optical connections capabilities of the underlying ASON/GMPLS networks.
Park, Won Bae. "Routing algorithms for Clos networks in SONET/SDH digital cross-connect systems." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/13837.
Full textMcGleenon, Patrick. "Modelling the management behaviour of synchronous digital hierarchy transmission networks." Thesis, Queen's University Belfast, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361221.
Full textBooks on the topic "Synchronous digital hierarchy (SDH)"
Ablett, Susan. SDH: Strategies, benefits, and technology. Cambridge, England: Analysys Publications, 1992.
Find full textSexton, Mike. Broadband networking: ATM, SDH, and SONET. Boston: Artech House, 1997.
Find full textKartalopoulos, Stamatios V. Next generation SONET/SDH: Voice and data. Hoboken, NJ: Wiley-Interscience, 2005.
Find full textUnderstanding SONET/SDH: Standards and applications. Holmdel, N.J: Andan Publisher, 1995.
Find full textHelvoort, Huub van. The ComSoc guide to next generation optical transport: SDH/SONET/OTN. Piscataway, NJ: IEEE Press, 2009.
Find full textHelvoort, Huub van. The ComSoc guide to next generation optical transport: SDH/SONET/OTN. Piscataway, NJ: IEEE Press, 2009.
Find full textAdvances in transport network technologies: Photonic networks, ATM, and SDH. Boston: Artech House, 1996.
Find full textThalmann, Markus Andreas. A SDH add/drop multiplexer as "system-on-chip". Konstanz: Hartung-Gorre, 2000.
Find full textHelvoort, Huub van. SDH/SONET Explained in Functional Models. New York: John Wiley & Sons, Ltd., 2005.
Find full textBook chapters on the topic "Synchronous digital hierarchy (SDH)"
Brown, T. S., D. Rowland, A. Vinall, and A. O’Neill. "Broadband Transport — the Synchronous Digital Hierarchy." In Data Network Engineering, 272–90. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5215-4_13.
Full textChorafas, Dimitris N. "Synchronous Digital Hierarchy, SONET and Other Protocols for Telecommunications." In Protocols, Servers and Projects for Multimedia Realtime Systems, 84–110. London: Palgrave Macmillan UK, 1997. http://dx.doi.org/10.1007/978-1-349-14096-1_4.
Full text"Data Over SDH." In Principles of Synchronous Digital Hierarchy, 399–414. CRC Press, 2012. http://dx.doi.org/10.1201/b12731-14.
Full text"Data Over SDH." In Principles of Synchronous Digital Hierarchy, 423–38. CRC Press, 2018. http://dx.doi.org/10.1201/9781315216355-16.
Full textMatthews, Mark. "The Synchronous Digital Hierarchy (SDH)." In Telecommunications Engineer's Reference Book, 42–1. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-7506-1162-6.50048-4.
Full text"Operations and Maintenance in SDH." In Principles of Synchronous Digital Hierarchy, 317–58. CRC Press, 2012. http://dx.doi.org/10.1201/b12731-12.
Full text"SDH Architecture and Protection Mechanism." In Principles of Synchronous Digital Hierarchy, 359–98. CRC Press, 2012. http://dx.doi.org/10.1201/b12731-13.
Full text"SDH Architecture and Protection Mechanism." In Principles of Synchronous Digital Hierarchy, 383–422. CRC Press, 2018. http://dx.doi.org/10.1201/9781315216355-15.
Full text"Operations and Maintenance in SDH." In Principles of Synchronous Digital Hierarchy, 341–82. CRC Press, 2018. http://dx.doi.org/10.1201/9781315216355-14.
Full text"Emerging Systems and the Future of SDH." In Principles of Synchronous Digital Hierarchy, 415–51. CRC Press, 2012. http://dx.doi.org/10.1201/b12731-15.
Full textConference papers on the topic "Synchronous digital hierarchy (SDH)"
Hall, I. J. "Unit protection utilising synchronous digital hierarchy (SDH) communication systems - why a new design approach is necessary." In 7th International Conference on Developments in Power Systems Protection (DPSP 2001). IEE, 2001. http://dx.doi.org/10.1049/cp:20010111.
Full textHartono, Ariono Verdianto, and Chairul Hudaya. "The Development of Power Substation Communication Using Independent Network of Synchronous Digital Hierarchy." In 2019 IEEE 2nd International Conference on Power and Energy Applications (ICPEA). IEEE, 2019. http://dx.doi.org/10.1109/icpea.2019.8818490.
Full textYin, Shuhua, Hu Lei, and Lu Tian. "Application of Synchronization Status Message Based on the Self-healing Ring Network with Synchronous Digital Hierarchy." In 2015 4th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icmmcce-15.2015.129.
Full textReports on the topic "Synchronous digital hierarchy (SDH)"
Malis, A., P. Pate, and D. Zelig. Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) Circuit Emulation over Packet (CEP). Edited by R. Cohen. RFC Editor, April 2007. http://dx.doi.org/10.17487/rfc4842.
Full textMalis, A., J. Brayley, J. Shirron, L. Martini, and S. Vogelsang. Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) Circuit Emulation Service over MPLS (CEM) Encapsulation. RFC Editor, February 2008. http://dx.doi.org/10.17487/rfc5143.
Full textZelig, D., R. Cohen, and T. Nadeau, eds. Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) Circuit Emulation over Packet (CEP) MIB Using SMIv2. RFC Editor, May 2011. http://dx.doi.org/10.17487/rfc6240.
Full textLang, J., and D. Papadimitriou. Synchronous Optical Network (SONET)/Synchronous Digital Hierarchy (SDH) Encoding for Link Management Protocol (LMP) Test Messages. RFC Editor, October 2005. http://dx.doi.org/10.17487/rfc4207.
Full textTesink, K. Definitions of Managed Objects for the Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) Interface Type. RFC Editor, September 2003. http://dx.doi.org/10.17487/rfc3592.
Full textMannie, E., and D. Papadimitriou. Generalized Multi-Protocol Label Switching (GMPLS) Extensions for Synchronous Optical Network (SONET) and Synchronous Digital Hierarchy (SDH) Control. RFC Editor, August 2006. http://dx.doi.org/10.17487/rfc4606.
Full textMannie, E., and D. Papadimitriou. Generalized Multi-Protocol Label Switching (GMPLS) Extensions for Synchronous Optical Network (SONET) and Synchronous Digital Hierarchy (SDH) Control. RFC Editor, October 2004. http://dx.doi.org/10.17487/rfc3946.
Full textBernstein, G., E. Mannie, V. Sharma, and E. Gray. Framework for Generalized Multi-Protocol Label Switching (GMPLS)-based Control of Synchronous Digital Hierarchy/Synchronous Optical Networking (SDH/SONET) Networks. RFC Editor, December 2005. http://dx.doi.org/10.17487/rfc4257.
Full textJones, N., and C. Murton. Extending Point-to-Point Protocol (PPP) over Synchronous Optical NETwork/Synchronous Digital Hierarchy (SONET/SDH) with virtual concatenation, high order and low order payloads. RFC Editor, April 2002. http://dx.doi.org/10.17487/rfc3255.
Full textOkamoto, O., M. Maruyama, and T. Sajima. Forwarding Media Access Control (MAC) Frames over Multiple Access Protocol over Synchronous Optical Network/Synchronous Digital Hierarchy (MAPOS). RFC Editor, November 2002. http://dx.doi.org/10.17487/rfc3422.
Full text