Academic literature on the topic 'Synchronous dynamics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Synchronous dynamics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Synchronous dynamics"

1

Li, Yi Min, Zhi Yong Hao, and Jin Li. "Analysis and Research of Dynamic Characteristics of Synchronous Belt of a Diesel Using Multi-Body Dynamics." Applied Mechanics and Materials 97-98 (September 2011): 721–25. http://dx.doi.org/10.4028/www.scientific.net/amm.97-98.721.

Full text
Abstract:
The dynamic tension of synchronous belt and pulleys forces are obtained by analyzing the dynamic characteristics of timing drive system of a diesel based on muti-body dynamics. The effects of crankshaft speed fluctuation and other excitations on the dynamics characteristics of synchronous belt are illustrated. After the analysis, it is found that crankshaft speed fluctuation has a great influence on the linear and transversal vibrations of synchronous belt. Comparing the simulation results of the original timing system and the one optimized, it is found that the modal frequency of synchronous belt depends on its span. Therefore it is important to control the span of belt and arrange the tensioner pulley properly for timing system design.
APA, Harvard, Vancouver, ISO, and other styles
2

Shi, Yao Chen, Zhan Guo Li, and Xiu Guang Yang. "The Tooth Profile of Car Synchronous Belt Influencing on the Stress Distribution." Applied Mechanics and Materials 602-605 (August 2014): 339–41. http://dx.doi.org/10.4028/www.scientific.net/amm.602-605.339.

Full text
Abstract:
This paper aim at the ZA type car synchronous belt, using the CATIA software create the synchronous belt and pulleys 3D model, divide synchronous belt mesh with ANSYS software, and import into the multi-body dynamics software RecurDyn and build up the dynamic simulation model of the car synchronous belt transmission through the MFBD (more flexible body dynamics) techniques. Analyzed the transmission performance of the synchronous belt、contact stress of tooth surface and tension stress. It propose the stress distribution between belt and pulley, and the distribution state of the tensile stress. It provide a digital simulation and design method to design the car synchronous belt tooth shape, analysis the transmission performance and select the material of rubber and the reinforcing cords.
APA, Harvard, Vancouver, ISO, and other styles
3

Pavlova, Olga Nikolaevna, Alexyi Aleksandrovich Anisimov, Alexyi Igorevich Nazimov, and Alexyi Nikolaevich Pavlov. "Synchronous Dynamics of Nephrons Ensembles." Izvestiya of Saratov University. New series. Series: Physics 11, no. 1 (2011): 3–10. http://dx.doi.org/10.18500/1817-3020-2011-11-1-3-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

YANG, XIAO-SONG, and QUAN YUAN. "EMERGENT CHAOS SYNCHRONIZATION IN NONCHAOTIC CNNS." International Journal of Bifurcation and Chaos 18, no. 05 (2008): 1337–42. http://dx.doi.org/10.1142/s0218127408021026.

Full text
Abstract:
It is shown that emergent chaos synchronization can take place in coupled nonchaotic unit dynamical systems. This is demonstrated by coupling two nonchaotic cellular neural networks, in which the couplings give rise to a synchronous chaotic dynamics and in the meanwhile the synchronous dynamics is globally asymptotically stable, thus chaos synchronization takes place under the suitable couplings.
APA, Harvard, Vancouver, ISO, and other styles
5

Hwang, Yunn Lin, and Van Thuan Truong. "A Synchronous Approach for Numerical Simulation of Machine Tools." Key Engineering Materials 642 (April 2015): 317–22. http://dx.doi.org/10.4028/www.scientific.net/kem.642.317.

Full text
Abstract:
In this paper, a synchronous approach for dynamic simulation of machine tools is described. Computer Aided Engineering (CAE) method models and analyzes a dynamical parameter prototype of machine tools. In which, the flexible structure, interactive movement, non-linear factor effects as well as characteristics of resonance frequencies and mechanical transfer function are considered. The integrating Finite Element Method (FEM), Multi-Body Dynamics (MBD) and control carries out a solution of machine tools simulation for predicting dynamic machine behaviors. The static analysis and modal analysis of components are presented with sample examples. Cybernetic characteristics like Bode diagram and such a controller are implemented for movement tailors. The synchronous approach deduces a practically technical method for machines tools.
APA, Harvard, Vancouver, ISO, and other styles
6

Cirillo, Emilio Nicola Maria, Vanessa Jacquier, and Cristian Spitoni. "Metastability of Synchronous and Asynchronous Dynamics." Entropy 24, no. 4 (2022): 450. http://dx.doi.org/10.3390/e24040450.

Full text
Abstract:
Metastability is a ubiquitous phenomenon in nature, which interests several fields of natural sciences. Since metastability is a genuine non-equilibrium phenomenon, its description in the framework of thermodynamics and statistical mechanics has progressed slowly for a long time. Since the publication of the first seminal paper in which the metastable behavior of the mean field Curie–Weiss model was approached by means of stochastic techniques, this topic has been largely studied by the scientific community. Several papers and books have been published in which many different spin models were studied and different approaches were developed. In this review, we focus on the comparison between the metastable behavior of synchronous and asynchronous dynamics, namely, stochastic processes in discrete time in which, at each time, either all the spins or one single spin is updated. In particular, we discuss how two different stochastic implementations of the very same Hamiltonian give rise to different metastable behaviors.
APA, Harvard, Vancouver, ISO, and other styles
7

Vasseur, David A., Jeremy W. Fox, Andrew Gonzalez, et al. "Synchronous dynamics of zooplankton competitors prevail in temperate lake ecosystems." Proceedings of the Royal Society B: Biological Sciences 281, no. 1788 (2014): 20140633. http://dx.doi.org/10.1098/rspb.2014.0633.

Full text
Abstract:
Although competing species are expected to exhibit compensatory dynamics (negative temporal covariation), empirical work has demonstrated that competitive communities often exhibit synchronous dynamics (positive temporal covariation). This has led to the suggestion that environmental forcing dominates species dynamics; however, synchronous and compensatory dynamics may appear at different length scales and/or at different times, making it challenging to identify their relative importance. We compiled 58 long-term datasets of zooplankton abundance in north-temperate and sub-tropical lakes and used wavelet analysis to quantify general patterns in the times and scales at which synchronous/compensatory dynamics dominated zooplankton communities in different regions and across the entire dataset. Synchronous dynamics were far more prevalent at all scales and times and were ubiquitous at the annual scale. Although we found compensatory dynamics in approximately 14% of all combinations of time period/scale/lake, there were no consistent scales or time periods during which compensatory dynamics were apparent across different regions. Our results suggest that the processes driving compensatory dynamics may be local in their extent, while those generating synchronous dynamics operate at much larger scales. This highlights an important gap in our understanding of the interaction between environmental and biotic forces that structure communities.
APA, Harvard, Vancouver, ISO, and other styles
8

Friston, Karl J. "The labile brain. I. Neuronal transients and nonlinear coupling." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 355, no. 1394 (2000): 215–36. http://dx.doi.org/10.1098/rstb.2000.0560.

Full text
Abstract:
In this, the first of three papers, the nature of, and motivation for, neuronal transients is described in relation to characterizing brain dynamics. This paper deals with some basic aspects of neuronal dynamics, interactions, coupling and implicit neuronal codes. The second paper develops neuronal transients and nonlinear coupling in the context of dynamic instability and complexity, and suggests that instability or lability is necessary for adaptive self–organization. The final paper addresses the role of neuronal transients through information theory and the emergence of spatio–temporal receptive fields and functional specialization. By considering the brain as an ensemble of connected dynamic systems one can show that a sufficient description of neuronal dynamics comprises neuronal activity at a particular time and its recent history. This history constitutes a neuronal transient. As such, transients represent a fundamental metric of neuronal interactions and, implicitly, a code employed in the functional integration of brain systems. The nature of transients, expressed conjointly in distinct neuronal populations, reflects the underlying coupling among populations. This coupling may be synchronous (and possibly oscillatory) or asynchronous. A critical distinction between synchronous and asynchronous coupling is that the former is essentially linear and the latter is nonlinear. The nonlinear nature of asynchronous coupling enables the rich, context–sensitive interactions that characterize real brain dynamics, suggesting that it plays a role in functional integration that may be as important as synchronous interactions. The distinction between linear and nonlinear coupling has fundamental implications for the analysis and characterization of neuronal interactions, most of which are predicated on linear (synchronous) coupling (e.g. crosscorrelograms and coherence). Using neuromagnetic data it is shown that nonlinear (asynchronous) coupling is, in fact, more abundant and can be more significant than synchronous coupling.
APA, Harvard, Vancouver, ISO, and other styles
9

Bolotov, Maxim, Tatiana Levanova, Lev Smirnov, and Arkady Pikovsky. "Dynamics of disordered heterogeneous chains of phase oscillators." Cybernetics and Physics, Volume 8, 2019, Number 4 (December 30, 2019): 215–21. http://dx.doi.org/10.35470/2226-4116-2019-8-4-215-221.

Full text
Abstract:
We study the problem of robustness of synchronous states to disorder in the chain of phase oscillators with local coupling. The study combines a numerical determination of the existence and stability of synchronous states with an analytical investigation of the role of the phase shift and the level of disorder in the natural frequencies in the destruction of synchrony. We show that the presence of the phase shift facilitates robustness of the synchronous regime, at least up to its certain threshold value.
APA, Harvard, Vancouver, ISO, and other styles
10

Wallach, Avner, and Shimon Marom. "Interactions between network synchrony and the dynamics of neuronal threshold." Journal of Neurophysiology 107, no. 11 (2012): 2926–36. http://dx.doi.org/10.1152/jn.00876.2011.

Full text
Abstract:
Synchronous activity impacts on a range of functional brain capacities in health and disease. To address the interrelations between cellular level activity and network-wide synchronous events, we implemented in vitro a recently introduced technique, the response clamp, which enables online monitoring of single neuron threshold dynamics while ongoing network synchronous activity continues uninterrupted. We show that the occurrence of a synchronous network event causes a significant biphasic change in the single neuron threshold. These threshold dynamics are correlated across the neurons constituting the network and are entailed by the input to the neurons rather than by their own spiking (i.e., output) activity. The magnitude of network activity during a synchronous event is correlated with the threshold state of individual neurons at the event's onset. Recovery from the impact of a given synchronous event on the neuronal threshold lasts several seconds and seems to be a key determinant of the time to the next spontaneously occurring synchronous event. Moreover, the neuronal threshold is shown to be correlated with the excitability dynamics of the entire network. We conclude that the relations between the two levels (network activity and the single neuron threshold) should be thought of in terms that emphasize their interactive nature.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography