To see the other types of publications on this topic, follow the link: Synthèse chirale.

Journal articles on the topic 'Synthèse chirale'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Synthèse chirale.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Martin, Hubert, Rudolf Herrmann, and Ivar Ugi. "Synthese einer chiralen Thienamycin-Vorstufe / Synthesis of a Chiral Thienamycine Intermediate." Zeitschrift für Naturforschung B 42, no. 12 (December 1, 1987): 1588–90. http://dx.doi.org/10.1515/znb-1987-1217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rajca, Andrzej, and Suchada Rajca. "Asymmetrische Synthese chiraler Tetraphenylene." Angewandte Chemie 122, no. 4 (December 22, 2009): 683–85. http://dx.doi.org/10.1002/ange.200905421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Herges, Rainer, Markus Deichmann, Tsuneki Wakita, and Yoshio Okamoto. "Synthese einer chiralen Röhre." Angewandte Chemie 115, no. 10 (March 10, 2003): 1202–4. http://dx.doi.org/10.1002/ange.200390279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fenske, Dieter, and Kurt Merzweiler. "Ein Beitrag zur Synthese neuer chiraler Phosphanliganden / Synthesis of a New Chiral Phosphine Ligand." Zeitschrift für Naturforschung B 44, no. 8 (August 1, 1989): 879–83. http://dx.doi.org/10.1515/znb-1989-0803.

Full text
Abstract:
The new chiral diphosphine 2 was synthesized from mucochloric acid. The structure of the NiI2-complex 7 was determined by single crystal X-ray analysis. 7 crystallizes in the orthorhombic space group P212121. The lattice constants (at 180 K) are: a = 914.1(2); b = 1422.0(3); c = 4112.5(10) pm.
APA, Harvard, Vancouver, ISO, and other styles
5

Bringmann, Gerhard, Anne J. Price Mortimer, Paul A. Keller, Mary J. Gresser, James Garner, and Matthias Breuning. "Atropselektive Synthese axial-chiraler Biaryle." Angewandte Chemie 117, no. 34 (August 26, 2005): 5518–63. http://dx.doi.org/10.1002/ange.200462661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Markopoulos, Georgios, Lars Henneicke, Jun Shen, Yoshio Okamoto, Peter G. Jones, and Henning Hopf. "Tribenzotriquinacen: eine vielseitige Synthese undC3-chirale Plattformen." Angewandte Chemie 124, no. 51 (November 9, 2012): 13057–60. http://dx.doi.org/10.1002/ange.201207220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hammann, P. "Enantioselektive Synthesen chiraler Piperidinalkaloide." Nachrichten aus Chemie, Technik und Laboratorium 38, no. 3 (March 1990): 342–52. http://dx.doi.org/10.1002/nadc.19900380309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Giovannini, P. P., O. Bortolini, A. Cavazzini, R. Greco, G. Fantin, and A. Massi. "Expanding the scope of enzymatic carboligation reactions in flow-mode: production of optically active tertiary alcohols with packed-bed micro-bioreactors." Green Chem. 16, no. 8 (2014): 3904–15. http://dx.doi.org/10.1039/c4gc00838c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cuny, Eckehard, and Rolf Jaeger. "Die Konfiguration bei Substitutionsreaktionen. Chirale Synthesen." Chemie in unserer Zeit 44, no. 1 (February 2010): 40–48. http://dx.doi.org/10.1002/ciuz.200900479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Islam, Md Mominul, Piyali Bhanja, Mita Halder, Sudipta K. Kundu, Asim Bhaumik, and Sk Manirul Islam. "Chiral Co(iii)–salen complex supported over highly ordered functionalized mesoporous silica for enantioselective aminolysis of racemic epoxides." RSC Advances 6, no. 111 (2016): 109315–21. http://dx.doi.org/10.1039/c6ra21523h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Hafner, Klaus, Günter L. Knaup, Hans Jörg Lindner, and Hans-Christian Flöter. "Synthese und dynamische Eigenschaften chiraler Heptalene." Angewandte Chemie 97, no. 3 (March 1985): 209–13. http://dx.doi.org/10.1002/ange.19850970311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Giannis, Athanassios, and Thomas Henk. "Synthese chiraler Bausteine ausD-glucosamin-hydrochlorid." Liebigs Annalen der Chemie 1991, no. 8 (August 12, 1991): 789–93. http://dx.doi.org/10.1002/jlac.1991199101135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Nebout, Brigitte, Bernard De Jeso, and Annette Marchand. "Enamines organostanniques chirales: Synthese et structure." Journal of Organometallic Chemistry 299, no. 3 (January 1986): 319–30. http://dx.doi.org/10.1016/0022-328x(86)84006-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ahlbrecht, Hubertus, Dieter Enders, Ludger Santowski, and Gerd Zimmermann. "Chirale Homoenolat-Äquivalente, II: Asymmetrische Synthese 3-substituierter Phenylpropionaldehyde über metallierte chirale Cinnamylamine." Chemische Berichte 122, no. 10 (October 1989): 1995–2004. http://dx.doi.org/10.1002/cber.19891221027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Morr, Michael, Jens Fortkamp, and Stefan Rühe. "Chirale methylverzweigte Tenside und Phospholipide: Synthese und Eigenschaften." Angewandte Chemie 109, no. 22 (November 14, 1997): 2567–69. http://dx.doi.org/10.1002/ange.19971092213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kunz, Horst, and Karola Rück. "Kohlenhydrate als chirale Auxiliare in der stereoselektiven Synthese." Angewandte Chemie 105, no. 3 (March 1993): 355–77. http://dx.doi.org/10.1002/ange.19931050305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Gennari, Cesare, Barbara Salom, Donatella Potenza, and Anthony Williams. "Synthese von Sulfonamid-Pseudopeptiden: neue chirale synthetische Oligomere." Angewandte Chemie 106, no. 20 (October 17, 1994): 2181–83. http://dx.doi.org/10.1002/ange.19941062023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Wunberg, Tobias, Christopher Kallus, Till Opatz, Stefan Henke, Wolfgang Schmidt, and Horst Kunz. "Kohlenhydrate – multifunktionelle chirale Gerüste in der kombinatorischen Synthese." Angewandte Chemie 110, no. 18 (September 18, 1998): 2620–22. http://dx.doi.org/10.1002/(sici)1521-3757(19980918)110:18<2620::aid-ange2620>3.0.co;2-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Wagner, Lisa, Theresa Roß, Tim Hollmann, and Frank Hahn. "Cross-linking of a polyketide synthase domain leads to a recyclable biocatalyst for chiral oxygen heterocycle synthesis." RSC Advances 11, no. 33 (2021): 20248–51. http://dx.doi.org/10.1039/d1ra03692k.

Full text
Abstract:
Cross-linking of the polyketide synthase domain AmbDH3 led to an active aggregate with improved properties for the chemoenzymatic synthesis of chiral oxygen heterocycles, such as recyclability and facile purification.
APA, Harvard, Vancouver, ISO, and other styles
20

Chattopadhyay, Amit Kumar, and Stephen Hanessian. "Cyclic enaminones. Part I: stereocontrolled synthesis using diastereoselective and catalytic asymmetric methods." Chemical Communications 51, no. 92 (2015): 16437–49. http://dx.doi.org/10.1039/c5cc05891k.

Full text
Abstract:
Here, we summarize three approaches for stereoselective syntheses of cyclic enaminones and their functionalized derivatives. These include chiral substrates (chirons) as starting materials, syntheses employing non-catalytic (stoichiometric) reagents, and catalytic asymmetric methods.
APA, Harvard, Vancouver, ISO, and other styles
21

Chavan, Subhash P., Lalit B. Khairnar, Kailash P. Pawar, Prakash N. Chavan, and Sanket A. Kawale. "Enantioselective syntheses of (R)-pipecolic acid, (2R,3R)-3-hydroxypipecolic acid, β-(+)-conhydrine and (−)-swainsonine using an aziridine derived common chiral synthon." RSC Advances 5, no. 62 (2015): 50580–90. http://dx.doi.org/10.1039/c5ra06429e.

Full text
Abstract:
Concise total syntheses of (R)-pipecolic acid, (2R,3R)-3-hydroxypipecolic acid and formal syntheses of β-(+)-conhydrine, (−)-lentiginosine, (−)-swainsonine and -1,2-di-epi-swainsonine have been accomplished starting from a common chiral synthon.
APA, Harvard, Vancouver, ISO, and other styles
22

Pellissier, Hélène. "Asymmetric Organocatalytic Tandem/Domino Reactions to Access Bioactive Products." Current Organic Chemistry 25, no. 13 (September 2, 2021): 1457–71. http://dx.doi.org/10.2174/1385272825666210208142427.

Full text
Abstract:
Tandem and domino reactions constitute economic methodologies to prepare complex molecules starting from simple materials. Especially, combining these powerful procedures to asymmetric catalysis allows direct access to many elaborated chiral products, including important key intermediates in total syntheses of important biologically active compounds. A range of various types of chiral organocatalysts have already been successfully applied to such syntheses. This review presents major developments in the total synthesis of bioactive products based on the use of enantioselective organocatalytic domino/tandem reactions as key steps. It is divided into three parts, dealing successively with syntheses based on organocatalytic asymmetric Michael-initiated domino reactions as key steps; aldol-initiated domino/tandem reactions and other domino reactions.
APA, Harvard, Vancouver, ISO, and other styles
23

Noreen, Samar, Ameer Fawad Zahoor, Sajjad Ahmad, Irum Shahzadi, Ali Irfan, and Sadia Faiz. "Novel Chiral Ligands for Palladium-catalyzed Asymmetric Allylic Alkylation/ Asymmetric Tsuji-Trost Reaction: A Review." Current Organic Chemistry 23, no. 11 (August 29, 2019): 1168–213. http://dx.doi.org/10.2174/1385272823666190624145039.

Full text
Abstract:
Background: Asymmetric catalysis holds a prestigious role in organic syntheses since a long time and chiral inductors such as ligands have been used to achieve the utmost desired results at this pitch. The asymmetric version of Tsuji-Trost allylation has played a crucial role in enantioselective synthesis. Various chiral ligands have been known for Pdcatalyzed Asymmetric Allylic Alkylation (AAA) reactions and exhibited excellent catalytic potential. The use of chiral ligands as asymmetric inductors has widened the scope of Tsuji-Trost allylic alkylation reactions. Conclusion: Therefore, in this review article, a variety of chiral inductors or ligands have been focused for palladium catalyzed asymmetric allylic alkylation (Tsuji-Trost allylation) and in this regard, recently reported literature (2013-2017) has been described. The use of ligands causes the induction of enantiodiscrimination to the allylated products, therefore, the syntheses of various kinds of ligands have been targeted by many research groups to employ in Pd-catalyzed AAA reactions.
APA, Harvard, Vancouver, ISO, and other styles
24

Kuhs, Klaus V., and G. A. R. Field. "Enantioselektive Synthesen in chiralen Laborgeräten." Nachrichten aus Chemie, Technik und Laboratorium 43, no. 4 (April 1995): 470–71. http://dx.doi.org/10.1002/nadc.19950430426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Daußmann, T., H. G. Hennemann, T. C. Rosen, and P. Dünkelmann. "Enzymatische Technologien zur Synthese chiraler Alkohol-Derivate." Chemie Ingenieur Technik 78, no. 3 (March 2006): 249–55. http://dx.doi.org/10.1002/cite.200600004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Bestmann, Hans Jürgen, and Ulrich Christian Philipp. "Enzymatische Synthese chiraler C4-Bausteine ausmeso-Weinsäure." Angewandte Chemie 103, no. 1 (January 1991): 78–79. http://dx.doi.org/10.1002/ange.19911030112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Chen, Guofei, and Shengming Ma. "Enantioselektive Halogencyclisierungen zur Synthese chiraler cyclischer Verbindungen." Angewandte Chemie 122, no. 45 (September 13, 2010): 8484–86. http://dx.doi.org/10.1002/ange.201003114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Sehl, T., H. C. Hailes, J. Ward, W. Wiechert, M. Pohl, and D. Gocke. "Charakterisierung von Enzymen zur Synthese chiraler Aminoalkohole." Chemie Ingenieur Technik 82, no. 9 (August 27, 2010): 1536–37. http://dx.doi.org/10.1002/cite.201050465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Krüger, P., B. Weberndörfer, and H. Werner. "Synthese und Molekülstruktur chiraler Bis(1,3,2-dioxaphospholane)." Zeitschrift für anorganische und allgemeine Chemie 626, no. 10 (October 2000): 2228–34. http://dx.doi.org/10.1002/1521-3749(200010)626:10<2228::aid-zaac2228>3.0.co;2-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Hoffmann, Reinhard W, Bettina Hölzer, Oliver Knopff, and Klaus Harms. "Asymmetrische Synthese eines chiralen sekundären Grignard-Reagens." Angewandte Chemie 112, no. 17 (September 1, 2000): 3206–7. http://dx.doi.org/10.1002/1521-3757(20000901)112:17<3206::aid-ange3206>3.0.co;2-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kaupp, Gerd, and Michael Haak. "Absolute asymmetrische Synthese durch Belichtung chiraler Kristalle." Angewandte Chemie 105, no. 5 (May 1993): 727–28. http://dx.doi.org/10.1002/ange.19931050508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Evers, R., and M. Michalik. "Synthese und spektroskopische Eigenschaften chiraler 1,3-Oxazolidine." Journal f�r Praktische Chemie 333, no. 5 (1991): 699–710. http://dx.doi.org/10.1002/prac.19913330503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Al-Tel, Taleb H., Ren� Th�rmer, Raed A. Al-Qawasmeh, and W. Voelter. "Synthese multifunktioneller polycylischer chiraler Furanoide durch Pyranoseanellierungen." Journal f�r Praktische Chemie/Chemiker-Zeitung 338, no. 1 (1996): 320–26. http://dx.doi.org/10.1002/prac.19963380164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Noe, Christian R., Max Knollmüller, Gerhard Steinbauer, and Horst Völlenkle. "Chirale Lactole, V. Synthese von (S)-Benzoin ausmeso-Hydrobenzoin." Chemische Berichte 118, no. 11 (November 1985): 4453–58. http://dx.doi.org/10.1002/cber.19851181116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Vögtle, Fritz, Andreas Ostrowicki, Birgit Begemann, Martin Jansen, Martin Nieger, and Edgar Niecke. "Chirale dreilagige und kondensierte [2.2]Cyclophane Synthese, Struktur, Chiroptik." Chemische Berichte 123, no. 1 (January 1990): 169–76. http://dx.doi.org/10.1002/cber.19901230129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Reinhard, Gunther, Rainer Soltek, Gottfried Huttner, Annette Barth, Olaf Walter, and Laszlo Zsolnai. "Chirale Tripodliganden mit Phosphor- und Schwefeldonoren. Synthese und Komplexchemie." Chemische Berichte 129, no. 1 (January 1996): 97–108. http://dx.doi.org/10.1002/cber.19961290119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Scherer, Johannes, Gottfried Huttner, and Michael Büchner. "Chirale Tripod-Liganden mit Phosphit-Donorgruppe: Synthese und Komplexchemie." Chemische Berichte 129, no. 6 (June 1996): 697–713. http://dx.doi.org/10.1002/cber.19961290617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kunz, Horst, and Dirk Schanzenbach. "Kohlenhydrate als chirale Matrices: Stereoselektive Synthese von β-Aminosäuren." Angewandte Chemie 101, no. 8 (January 13, 2006): 1042–43. http://dx.doi.org/10.1002/ange.19891010812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Bolm, Carsten, Toni Rantanen, Ingo Schiffers, and Lorenzo Zani. "Protonierte chirale Katalysatoren: vielseitige Hilfsmittel für die asymmetrische Synthese." Angewandte Chemie 117, no. 12 (March 8, 2005): 1788–93. http://dx.doi.org/10.1002/ange.200500154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Reißig, Hans-Ulrich. "Zucker als chirale Auxiliare für die Synthese enantiomerenreiner Verbindungen." Angewandte Chemie 104, no. 3 (March 1992): 295–97. http://dx.doi.org/10.1002/ange.19921040308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Dewynter, Georges, Nourreddine Aouf, marc Criton, and Jean-Louis Montero. "Synthèse de “sulfahydatoïnes” chirales. Aspects stéréochimiques et protection régiospécifique." Tetrahedron 49, no. 1 (January 1993): 65–76. http://dx.doi.org/10.1016/s0040-4020(01)80506-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Jurczak, Janusz, and Tomasz Bauer. "Glyoxylic acid derivatives in asymmetric synthesis." Pure and Applied Chemistry 72, no. 9 (January 1, 2000): 1589–96. http://dx.doi.org/10.1351/pac200072091589.

Full text
Abstract:
Synthesis of chiral derivatives of glyoxylic acid with special emphasis on N-glyoxyloyl-(2R)-bornane-10,2-sultam is presented. Investigation of glyoxylic acid chiral derivatives in various stereocontrolled organic syntheses showed their excellent ability to provide products of high optical purity. Application of our methodology to the synthesis of natural products and their analogs is presented.
APA, Harvard, Vancouver, ISO, and other styles
43

Roy, René, and Tze Chieh Shiao. "Glyconanosynthons as powerful scaffolds and building blocks for the rapid construction of multifaceted, dense and chiral dendrimers." Chemical Society Reviews 44, no. 12 (2015): 3924–41. http://dx.doi.org/10.1039/c4cs00359d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Nasir, Shah Bakhtiar, Noorsaadah Abd Rahman, and Chin Fei Chee. "Enantioselective Syntheses of Flavonoid Diels-Alder Natural Products: A Review." Current Organic Synthesis 15, no. 2 (April 24, 2018): 221–29. http://dx.doi.org/10.2174/1570179414666170821120234.

Full text
Abstract:
Background: The Diels-Alder reaction has been widely utilised in the syntheses of biologically important natural products over the years and continues to greatly impact modern synthetic methodology. Recent discovery of chiral organocatalysts, auxiliaries and ligands in organic synthesis has paved the way for their application in Diels-Alder chemistry with the goal to improve efficiency as well as stereochemistry. Objective: The review focuses on asymmetric syntheses of flavonoid Diels-Alder natural products that utilize chiral ligand-Lewis acid complexes through various illustrative examples. Conclusion: It is clear from the review that a significant amount of research has been done investigating various types of catalysts and chiral ligand-Lewis acid complexes for the enantioselective synthesis of flavonoid Diels-Alder natural products. The results have demonstrated improved yield and enantioselectivity. Much emphasis has been placed on the synthesis but important mechanistic work aimed at understanding the enantioselectivity has also been discussed.
APA, Harvard, Vancouver, ISO, and other styles
45

Monasterolo, Claudio, Helge Müller-Bunz, and Declan G. Gilheany. "Very short highly enantioselective Grignard synthesis of 2,2-disubstituted tetrahydrofurans and tetrahydropyrans." Chemical Science 10, no. 26 (2019): 6531–38. http://dx.doi.org/10.1039/c9sc00978g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Csuk, René, and Gisela Thiede. "Synthese difluorierter cyclopropanoider Nucleosidanaloga/Synthesis of Difluorinated Cyclopropanoid Nucleoside Analogues." Zeitschrift für Naturforschung B 57, no. 11 (November 1, 2002): 1287–94. http://dx.doi.org/10.1515/znb-2002-1115.

Full text
Abstract:
Starting from (2,2-difluorocyclopropyl)methanol a novel class of difluorinated cyclopropanoid nucleoside analogues containing two hydroxymethyl side chains was synthesized in a straightforward way. Several of the final compounds could be obtained in an enantiomerically pure form by HPLC using chiral stationary phases.
APA, Harvard, Vancouver, ISO, and other styles
47

House, DA, PJ Steel, and AA Watson. "Chiral Heterocyclic Ligands. II. Synthesis and Palladium(II) Complexes of Chiral Pyrazolylmethyl-Pyridines and Pyrazolylmethyl-Pyrazoles." Australian Journal of Chemistry 39, no. 10 (1986): 1525. http://dx.doi.org/10.1071/ch9861525.

Full text
Abstract:
The syntheses of the pyrazolylmethylpyridines (5a-c), their chiral derivatives (7) and (8), and the chiral methylenebisindazoles (9)-(11) are reported. These bidentate ligands form stable 1 : 1 complexes with PdCl2. A single-crystal X-ray structure determination of dichloro [(4S,7R)-7,8,8-trimethyl-2-(pyridin-2-ylmethyl)-4,5,6,7-tetrahydro-4,7-methano-2H-indazole]palladium(II),(16), is also reported.
APA, Harvard, Vancouver, ISO, and other styles
48

Li, Xi-An, Jia-Yuan Li, Bin Yang, and Shang-Dong Yang. "Catalyst-free three-component reaction to synthesize chiral α-amino phosphine oxides." RSC Adv. 4, no. 75 (2014): 39920–23. http://dx.doi.org/10.1039/c4ra05645k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kim, Yong Hae, Sam Min Kim, Doo Han Park, and So Won Youn. "Stereocontrolled asymmetric synthesis." Pure and Applied Chemistry 72, no. 9 (January 1, 2000): 1691–97. http://dx.doi.org/10.1351/pac200072091691.

Full text
Abstract:
Stereo differentiated asymmetric syntheses have been achieved by S-indoline derivations. Diels-Alder cycloadditions of S-indoline chiral acrylamides with cyclopentadiene proceed with high diastereofacial selectivity, giving either endo-R or endo-S products depending on Lewis acid and the structures of chiral dienophiles. Diastereo- and enantio-selective pinacol coupling reactions of chiral α-ketoamides mediated by samarium diiodide afforded extremely high diastereoselectivities. Enantiopure (S,S)- or (R,R)-2,3-dialkyltar-taric acid and derivatives can be synthesized for the first time depending on the structure of α-ketoamides.
APA, Harvard, Vancouver, ISO, and other styles
50

Ashraf, Syed A., Yingpit Pornputtkul, Leon A. P. Kane-Maguire, and Gordon G. Wallace. "Facile Synthesis of a Chiral Ionic Liquid Derived from 1-Phenylethylamine." Australian Journal of Chemistry 60, no. 1 (2007): 64. http://dx.doi.org/10.1071/ch06384.

Full text
Abstract:
A simple route is described to enantiomerically pure ionic liquids derived from (+)- and (–)-1-phenylethylamine. These very low melting point (–42°C) ionic liquids, containing the bis(trifluoromethylsulfonylimide) anion, possess a wide electrochemical potential window between –2.0 and +2.0 V (versus Ag|AgCl). They show chiral discrimination between the enantiomeric forms of Mosher’s salt, suggesting their potential as media for electrochemical asymmetric syntheses or chiral chromatography.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography