Journal articles on the topic 'Synthesis of Naphtha'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Synthesis of Naphtha.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Nagarsha, K. M., T. M. Sharanakumar, D. Ramesh, et al. "NOVEL SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL ACTIVITY OF N-(5BROMO-2-(5-PHENYL1,3,4-OXADIAZOL-2-YL)NAPHTHA[2,1-B]FURAN-1- YL)ACETAMIDE AND N-(5-NITRO-2-(5-PHENYL-1,3,4- OXADIAZOL-2-YL)NAPHTHA[2,1-BFURAN-1-YL]ACETAMIDE AND THEIR DERIVATIVES." RASAYAN Journal of Chemistry 16, no. 01 (2023): 167–75. http://dx.doi.org/10.31788/rjc.2023.1618088.
Full textEmel, Pelit. "(±)-CSA Catalyzed Multicomponent Synthesis of Indeno Naphthopyrans and Tetrahydrobenzo[a]xanthen-11-ones Under Ultrasonic Irradiation." Chemical Science International Journal 20, no. 1 (2017): 1–8. https://doi.org/10.9734/CSJI/2017/35380.
Full textHájek, Jiří, Vladimír Hönig, Michal Obergruber, et al. "Advanced Biofuels Based on Fischer–Tropsch Synthesis for Applications in Gasoline Engines." Materials 14, no. 11 (2021): 3134. http://dx.doi.org/10.3390/ma14113134.
Full textDevi, K. Shashikala, M. Ramaiah, D. L. Roopa, and V. P. Vaidya. "Synthesis and Investigation of Antimicrobial and Antioxidant Activity of 3-Nitro-N- (3-chloro-2-oxo-substituted-phenyl-azetidin-1-yl)naphtho [2,1-b]furan-2-carboxamides." E-Journal of Chemistry 7, s1 (2010): S358—S362. http://dx.doi.org/10.1155/2010/863547.
Full textMoyinoluwa Solomon Adekeye, Ugochukwu Daniel Okwor, Samuel Maduekwe, et al. "Potentials and challenges of biofuels as a replacement for naphtha in steam cracking units." World Journal of Biology Pharmacy and Health Sciences 21, no. 1 (2025): 315–22. https://doi.org/10.30574/wjbphs.2025.21.1.0029.
Full textAhmed zeki, Nada Sadoon, Sattar Jalil Hussein, Khalifa K. Aoyed, Saad Kareem Ibrahim та Ibtissam K. Mehawee. "Synthesis and Characterization of Co-Mo/γ-Alumina Catalyst from local Kaolin clay for Hydrodesulfurization of Iraqi Naphtha". Journal of Petroleum Research and Studies 11, № 1 (2021): 84–106. http://dx.doi.org/10.52716/jprs.v11i1.431.
Full textAl-Tabbakh, Dr Ban A. Ahmed, and Maan M. Dawood. "Synthesis and Characterization of Sulfated Zirconia Catalyst for Light Naphtha Isomerization Process." Journal of Petroleum Research and Studies 12, no. 1(Suppl.) (2022): 186–98. http://dx.doi.org/10.52716/jprs.v12i1(suppl.).630.
Full textRabeeah Taj, Rabeeah Taj, Erum Pervaiz Erum Pervaiz, and Arshad Hussain Arshad Hussain. "Synthesis and Catalytic Activity of IM-5 Zeolite as Naphtha Cracking Catalyst for Light Olefins: A Review." Journal of the chemical society of pakistan 42, no. 2 (2020): 305. http://dx.doi.org/10.52568/000637.
Full textRabeeah Taj, Rabeeah Taj, Erum Pervaiz Erum Pervaiz, and Arshad Hussain Arshad Hussain. "Synthesis and Catalytic Activity of IM-5 Zeolite as Naphtha Cracking Catalyst for Light Olefins: A Review." Journal of the chemical society of pakistan 42, no. 2 (2020): 305. http://dx.doi.org/10.52568/000637/jcsp/42.02.2020.
Full textLi, Jimei, Jie Zhang, Mingfei Li, Chenyang Zhang, Yongkun Yuan, and Renhua Liu. "Naphtho[2,3-b]furan-4,9-dione synthesis via palladium-catalyzed reverse hydrogenolysis." Chemical Communications 55, no. 16 (2019): 2348–51. http://dx.doi.org/10.1039/c8cc09369e.
Full textVyas, Pooja, Barkha Darra Wadhwani, Ravindra Singh Rao та Poonam Khandelwal. "Facile Synthesis of Naphtha-quinoxaline Derivatives from β-lapachone Using Graphene Oxide as Catalyst". Current Organic Synthesis 17, № 2 (2020): 91–97. http://dx.doi.org/10.2174/1570179416666191210102358.
Full textBrancato, Vincenza, Elpida Piperopoulos, Emanuela Mastronardo, Luigi Calabrese, Candida Milone, and Edoardo Proverbio. "Synthesis and Characterization of Graphite Composite Foams for Oil Spill Recovery Application." Journal of Composites Science 4, no. 4 (2020): 154. http://dx.doi.org/10.3390/jcs4040154.
Full textKamel, Safa Abdul Salam, Wadood Taher Mohammed, and Haider Aljendeel. "Synthesis and Characterization of Ni-WO3/Sulfated Zirconia Nano catalyst for Isomerization of N-Hexane and Iraqi Light Naphtha." Iraqi Journal of Chemical and Petroleum Engineering 22, no. 4 (2021): 1–10. http://dx.doi.org/10.31699/ijcpe.2021.4.1.
Full textXanthopoulou, G., and G. Vekinis. "Catalytic Pyrolysis of Naphtha on SHS Catalysts." Eurasian Chemico-Technological Journal 12, no. 1 (2009): 17. http://dx.doi.org/10.18321/ectj21.
Full textYang, Shung Jim, and An Chi Yeh. "Synthesis and Electroluminescent Property of Bis{2-(naphtha [3,4]imidazol-2-Yl) Pyridinato} Magnesium." Advanced Materials Research 535-537 (June 2012): 2469–74. http://dx.doi.org/10.4028/www.scientific.net/amr.535-537.2469.
Full textIsmailov, F.S, M.U Karimov, and A.T Djalilov. "RESEARCH ON IMPROVING THE PROPERTIES OF CONCRETE MIXTURE WITH CHEMICAL ADDITIVES." International conference on multidisciplinary science 1, no. 2 (2023): 11–12. https://doi.org/10.5281/zenodo.8334892.
Full textRuelas-Leyva, Jose P., Luis F. Maldonado-Garcia, Alfonso Talavera-Lopez, et al. "A Comprehensive Study of Coke Deposits on a Pt-Sn/SBA-16 Catalyst during the Dehydrogenation of Propane." Catalysts 11, no. 1 (2021): 128. http://dx.doi.org/10.3390/catal11010128.
Full textSalikhova, Ozoda Abdullaevna, Sarvinoz Gani Qizi Shodmonova, and Kodirov Orif Sharipovich. "STUDY OF THE PROCESS OF OBTAINING A CATALYST FOR THE SYNTHESIS OF BENZENE BASED ON ETHYLENE FOR THE PRODUCTION OF CYCLOHEXANE." American Journal Of Applied Science And Technology 02, no. 05 (2022): 1–6. http://dx.doi.org/10.37547/ajast/volume02issue05-01.
Full textYoo, Taejun, and Steven K. Henning. "SYNTHESIS AND CHARACTERIZATION OF FARNESENE-BASED POLYMERS." Rubber Chemistry and Technology 90, no. 2 (2017): 308–24. http://dx.doi.org/10.5254/rct.17.82683.
Full textNagarsha, K. M., T. M. Sharanakumar, D. Ramesh, M. N. Kumarswamy, and K. P. Latha. "SYNTHESIS, CHARACTERIZATION, AND ANTIBACTERIAL ACTIVITIES OF NAPHTHO[2,1-b]FURAN DERIVATIVES." RASAYAN Journal of Chemistry 15, no. 04 (2022): 2477–84. http://dx.doi.org/10.31788/rjc.2022.1548052.
Full textSalah Aldeen, Omer Dhia Aldeen, Mustafa Z. Mahmoud, Hasan Sh Majdi, Dhameer A. Mutlak, Khusniddin Fakhriddinovich Uktamov, and Ehsan kianfar. "Investigation of Effective Parameters Ce and Zr in the Synthesis of H-ZSM-5 and SAPO-34 on the Production of Light Olefins from Naphtha." Advances in Materials Science and Engineering 2022 (February 24, 2022): 1–22. http://dx.doi.org/10.1155/2022/6165180.
Full textKazemeini, Mohammad, Reza Maleki, and Moslem Fattahi. "Modelling of Fischer-Tropsch Synthesis in a Fluidized Bed Reactor." Advanced Materials Research 586 (November 2012): 274–81. http://dx.doi.org/10.4028/www.scientific.net/amr.586.274.
Full textAhmadvand, M. S., S. Askari, and K. Sharifi. "Synthesis and performance of ZSM-5 and HZSM-5 in desulfurization of naphtha." International Journal of Environmental Science and Technology 17, no. 7 (2020): 3541–48. http://dx.doi.org/10.1007/s13762-020-02639-7.
Full textVeipa, Agate, Vladimirs Kirsanovs, and Aiga Barisa. "Techno-Economic Analysis of Biofuel Production Plants Producing Biofuels Using Fisher Tropsch Synthesis." Environmental and Climate Technologies 24, no. 2 (2020): 373–87. http://dx.doi.org/10.2478/rtuect-2020-0080.
Full textMailman, Aaron, and Jack Passmore. "THE SYNTHESIS OF 2,5-DIHYDROXYBENZO-1,3,2-DITHIAZOLYLIUM AND 2,7-DICARBONYL NAPHTHA-1,3,2-DITHIAZOLYLIUM CATIONS." Phosphorus, Sulfur, and Silicon and the Related Elements 179, no. 4-5 (2004): 977–78. http://dx.doi.org/10.1080/10426500490429527.
Full textShen, Baojian, Ping Wang, Zhou Yi та ін. "Synthesis of Zeolite β from Kaolin and Its Catalytic Performance For FCC Naphtha Aromatization". Energy & Fuels 23, № 1 (2009): 60–64. http://dx.doi.org/10.1021/ef800681e.
Full textYeh, Anchi, Ming-Shiun Jan, and Tsun-Ren Chen. "Synthesis and electroluminescent property of tris{2-(naphtha [3,4]imidazol-2-yl) pyridinato} Aluminum." Materials Letters 61, no. 1 (2007): 259–62. http://dx.doi.org/10.1016/j.matlet.2006.04.116.
Full textYeh, Anchi, and Tsun-Ren Chen. "Synthesis and electroluminescent property of bis{2-(naphtha[3,4]imidazol-2-yl) quinolinato} zinc." Materials Letters 59, no. 23 (2005): 2911–14. http://dx.doi.org/10.1016/j.matlet.2005.04.042.
Full textYin, Lifeng, Zhenyao Shen, Junfeng Niu, and Jiquan Fu. "Synthesis of hollow sphere-like mesoporous silica with reformer naphtha as a swelling agent." Materials Letters 63, no. 26 (2009): 2212–14. http://dx.doi.org/10.1016/j.matlet.2009.07.026.
Full textUlfiati, Ratu. "CATALYTIC PERFORMANCE OF ZSM-5 ZEOLITE IN HEAVY HYDROCARBON CATALYTIC CRACKING: A REVIEW." Scientific Contributions Oil and Gas 42, no. 1 (2020): 29–34. http://dx.doi.org/10.29017/scog.42.1.384.
Full textFlayyih, Mustafa H., та Mohammed S. Theib. "Effect of Cationic Surfactant in the Synthesis Process of Nano γ-Alumina for Petroleum Industry Application". Journal of Petroleum Research and Studies 12, № 4 (2022): 92–103. http://dx.doi.org/10.52716/jprs.v12i4.578.
Full textOsw, Peshawa, Andrea Nitti, Media N. Abdullah та ін. "Synthesis and Evaluation of Scalable D-A-D π-Extended Oligomers as p-Type Organic Materials for Bulk-Heterojunction Solar Cells". Polymers 12, № 3 (2020): 720. http://dx.doi.org/10.3390/polym12030720.
Full textMomayez, Forough, Jafar Towfighi Darian, and Seyedeh Mahboobeh Teimouri Sendesi. "Synthesis of zirconium and cerium over HZSM-5 catalysts for light olefins production from naphtha." Journal of Analytical and Applied Pyrolysis 112 (March 2015): 135–40. http://dx.doi.org/10.1016/j.jaap.2015.02.006.
Full textAzam, Faizul, Ismail A. Alkskas, Sukhbir Lal Khokra, and Om Prakash. "Synthesis of some novel N4-(naphtha[1,2-d]thiazol-2-yl)semicarbazides as potential anticonvulsants." European Journal of Medicinal Chemistry 44, no. 1 (2009): 203–11. http://dx.doi.org/10.1016/j.ejmech.2008.02.007.
Full textKamran Khan, Mohd, Mohd Faizan Alam Siddiqui, and Navira Qayyum. "Conventional Synthesis of Zinc Loaded Extruded ZSM-5 Its Surface Analysis by TPD Technique and Application in Catalytic Reforming of Naphtha Using HPMR Reactor." International Journal of Science and Research (IJSR) 12, no. 11 (2023): 1422–31. http://dx.doi.org/10.21275/sr231109123504.
Full textPahup, Singh, Krishna Vivek, Khandelwal Poonam, K. Sharma Kuldeep, and C. Sharma M. "Chemistry of lapacbol - Syntheses of some new biogenetically related naphthoquinones, naphthoquinone dimers, napbtbaquinoxaline and naphtha-azaquinoxaline derivatives from lapacbol." Journal of Indian Chemical Society Vol. 87, Jan 2010 (2010): 85–95. https://doi.org/10.5281/zenodo.5775453.
Full textLateef, Saheed A., Idris A. Bakare, and Oki Muraza. "Microwave assisted synthesis of MTT-TON intergrowth crystals for the catalytic conversion of naphtha to olefins." Microporous and Mesoporous Materials 260 (April 2018): 253–59. http://dx.doi.org/10.1016/j.micromeso.2017.10.023.
Full textMahmoudabadi, Zohal Safaei, Alimorad Rashidi, and Ahmad Tavasoli. "Synthesis of MoS2 quantum dots as a nanocatalyst for hydrodesulfurization of Naphtha: Experimental and DFT study." Journal of Environmental Chemical Engineering 8, no. 3 (2020): 103736. http://dx.doi.org/10.1016/j.jece.2020.103736.
Full textHajjar, Zeinab, Mohammad Kazemeini, Alimorad Rashidi, and Mansour Bazmi. "In Situ and Simultaneous Synthesis of a Novel Graphene-Based Catalyst for Deep Hydrodesulfurization of Naphtha." Catalysis Letters 145, no. 9 (2015): 1660–72. http://dx.doi.org/10.1007/s10562-015-1563-y.
Full textKashaev, Bulat V., Ruslan I. Raimanov, Ilyuza R. Yausheva, et al. "OBTAINING AN EFFECTIVE BUTADIENE-SYNTHESIS CATALYST FROM ETHANOL." Oil and Gas Business, no. 4 (September 14, 2023): 102–15. http://dx.doi.org/10.17122/ogbus-2023-4-102-115.
Full textIsmoilov, Feruz Sabirovich, Masud Karimov, Abdulahat Djalilov, and Khalovat Jabbarovna Ismoilova. "RESEARCH OF SYNTHESIS OF SUPERPLASTICIZER ON A BASIS NAPHTHA AND ITS INFLUENCE ON PHYSICOMECHANICAL PROPERTIES CEMENT COMPOSITIONS." Theoretical & Applied Science 108, no. 04 (2022): 87–91. http://dx.doi.org/10.15863/tas.2022.04.108.18.
Full textWang, Ping, Baojian Shen, Dongdong Shen, Tong Peng, and Jinsen Gao. "Synthesis of ZSM-5 zeolite from expanded perlite/kaolin and its catalytic performance for FCC naphtha aromatization." Catalysis Communications 8, no. 10 (2007): 1452–56. http://dx.doi.org/10.1016/j.catcom.2006.12.018.
Full textJung, Wonho, Geun Bae Rhim, Kwang Young Kim, Young Eun Kim, Min Hye Youn, and Dong Hyun Chun. "Sustainable naphtha production strategies based on combined reforming integrated with Fischer–Tropsch synthesis: Decarbonization and economic analysis." Energy Conversion and Management 342 (October 2025): 120099. https://doi.org/10.1016/j.enconman.2025.120099.
Full textMartino, Marco, Eugenio Meloni, Giovanni Festa, and Vincenzo Palma. "Propylene Synthesis: Recent Advances in the Use of Pt-Based Catalysts for Propane Dehydrogenation Reaction." Catalysts 11, no. 9 (2021): 1070. http://dx.doi.org/10.3390/catal11091070.
Full textqizi, Rajabova Sunbulla Rajab. "Chemistry and Technology of Obtaining Monomers." American Journal Of Applied Science And Technology 5, no. 4 (2025): 47–50. https://doi.org/10.37547/ajast/volume05issue04-12.
Full textShvartsberg, Mark S., Igor I. Barabanov, and Lidiya G. Fedenok. "Acetylenic compounds as key intermediates in heterocyclic synthesis: a route to functionalized naphtha[2,3-h]quinoline-7,12-diones." Mendeleev Communications 7, no. 3 (1997): 98–99. http://dx.doi.org/10.1070/mc1997v007n03abeh000762.
Full textItoh, Tetsuji, Shigeru Aomori, and Masahito Oh-e. "Synthesis, properties and FET characteristics of oxygen-based heterocycle dimers 9,9′-bi(benzo[b]naphtha[2,1-d]furan)." Synthetic Metals 209 (November 2015): 355–60. http://dx.doi.org/10.1016/j.synthmet.2015.08.008.
Full textMelo, F., and N. Morlanés. "Synthesis, characterization and catalytic behaviour of NiMgAl mixed oxides as catalysts for hydrogen production by naphtha steam reforming." Catalysis Today 133-135 (April 2008): 383–93. http://dx.doi.org/10.1016/j.cattod.2007.12.070.
Full textLi, Zishuo. "A Review of the Methanol to Olefin Process." Applied and Computational Engineering 129, no. 1 (2025): 193–98. https://doi.org/10.54254/2755-2721/2025.20991.
Full textPratschner, Simon, Martin Hammerschmid, Florian J. Müller, Stefan Müller, and Franz Winter. "Simulation of a Pilot Scale Power-to-Liquid Plant Producing Synthetic Fuel and Wax by Combining Fischer–Tropsch Synthesis and SOEC." Energies 15, no. 11 (2022): 4134. http://dx.doi.org/10.3390/en15114134.
Full text