Academic literature on the topic 'Synthetic and natural cannabinoids'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Synthetic and natural cannabinoids.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Synthetic and natural cannabinoids"
Akram, Hina, Claire Mokrysz, and H. Valerie Curran. "What are the psychological effects of using synthetic cannabinoids? A systematic review." Journal of Psychopharmacology 33, no. 3 (February 21, 2019): 271–83. http://dx.doi.org/10.1177/0269881119826592.
Full textAn, Dongchen, Steve Peigneur, Louise Antonia Hendrickx, and Jan Tytgat. "Targeting Cannabinoid Receptors: Current Status and Prospects of Natural Products." International Journal of Molecular Sciences 21, no. 14 (July 17, 2020): 5064. http://dx.doi.org/10.3390/ijms21145064.
Full textSun, Yan, and Andy Bennett. "Cannabinoids: A New Group of Agonists of PPARs." PPAR Research 2007 (2007): 1–7. http://dx.doi.org/10.1155/2007/23513.
Full textThomas, Brian F. "Interactions of Cannabinoids With Biochemical Substrates." Substance Abuse: Research and Treatment 11 (January 1, 2017): 117822181771141. http://dx.doi.org/10.1177/1178221817711418.
Full textPalamar, Joseph J., and Monica J. Barratt. "Synthetic cannabinoids: undesirable alternatives to natural marijuana." American Journal of Drug and Alcohol Abuse 42, no. 4 (April 11, 2016): 371–73. http://dx.doi.org/10.3109/00952990.2016.1139584.
Full textLim, Kevin J. H., Yan Ping Lim, Yossa D. Hartono, Maybelle K. Go, Hao Fan, and Wen Shan Yew. "Biosynthesis of Nature-Inspired Unnatural Cannabinoids." Molecules 26, no. 10 (May 14, 2021): 2914. http://dx.doi.org/10.3390/molecules26102914.
Full textZádor, Ferenc, Sâmia Joca, Gábor Nagy-Grócz, Szabolcs Dvorácskó, Edina Szűcs, Csaba Tömböly, Sándor Benyhe, and László Vécsei. "Pro-Inflammatory Cytokines: Potential Links between the Endocannabinoid System and the Kynurenine Pathway in Depression." International Journal of Molecular Sciences 22, no. 11 (May 31, 2021): 5903. http://dx.doi.org/10.3390/ijms22115903.
Full textGonçalves, Elaine C. D., Gabriela M. Baldasso, Maíra A. Bicca, Rodrigo S. Paes, Raffaele Capasso, and Rafael C. Dutra. "Terpenoids, Cannabimimetic Ligands, beyond the Cannabis Plant." Molecules 25, no. 7 (March 29, 2020): 1567. http://dx.doi.org/10.3390/molecules25071567.
Full textPaulsen, Paul, Carsten Carstensen, and Julia Juliansen. "The title of this test article." Journal of Benefit-Cost Analysis 1, no. 1 (January 1, 2013): 1–10. http://dx.doi.org/10.1515/jbca-2013-1233.
Full textGeryk, R., M. Švidrnoch, A. Přibylka, K. Kalíková, V. Maier, and E. Tesařová. "A supercritical fluid chromatography method for the systematic toxicology analysis of cannabinoids and their metabolites." Analytical Methods 7, no. 15 (2015): 6056–59. http://dx.doi.org/10.1039/c5ay01107h.
Full textDissertations / Theses on the topic "Synthetic and natural cannabinoids"
Turner, Richard Vernon. "SYNTHETIC CANNABINOIDS: CHARACTERIZING THEIR USE AND CESSATION." OpenSIUC, 2019. https://opensiuc.lib.siu.edu/dissertations/1766.
Full textCosta, Lia Filipa Alvarez Pereira da Mota e. "Cannabinoids impact on pregnancy: effects in trophoblast cells." Master's thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/15948.
Full textCannabinoids (CBs) can be classified as: phytocannabinoids, the constituents of the Cannabis sativa plant; synthetic cannabinoids lab-synthesized and the endocannabinoids that are endogenous lipid mediators. Cannabinoid compounds activate cannabinoid receptors – CB1 and CB2. The most prevalent psychoactive phytocannabinoid is Δ9tetrahydrocannabinol (THC), but more than 60 different CBs were already identified in the plant. The best characterized endocannabinoids (eCBs) are anandamide (AEA) and 2arachidonoylglycerol (2-AG), that are involved in several physiological processes including synaptic plasticity, pain modulation, energy homeostasis and reproduction. On the other hand, some synthetic cannabinoids that were initially designed for medical research, are now used as drugs of abuse. During the period of placental development, highly dynamic processes of remodeling occur, involving proliferation, apoptosis, differentiation and invasion of trophoblasts. It is known that a tight control of eCBs levels is required for normal pregnancy progression and that eCBs are involved in trophoblast cells turnover. Therefore, by sharing activation of the same receptors, exposure to exocannabinoids either by recreational or medicinal use may lead to alterations in the eCBs levels and in the endocannabinoid system homeostasis In this work, it was studied the impact of CBs in BeWo trophoblastic cells and in primary cultures of human cytotrophoblasts. Cells were treated for 24 hours with different concentrations of THC, the synthetic cannabinoid WIN‐55,212 (WIN) and 2-AG. Treatment with THC did not affect BeWo cells viability while WIN and 2-AG caused a dose-dependent viability loss. Morphological studies together with biochemical markers indicate that 2-AG is able to induce apoptosis in cytotrophoblasts. On the other hand, morphological studies after acridine orange staining suggest that autophagy may take part in WIN-induced loss of cell viability. All cannabinoids caused a decrease in mitochondrial membrane potential (Δψm) but only 2-AG led to ROS/RNS generation, though no changes in glutathione levels were observed. In addition, ER-stress may be involved in the 2-AG induced-oxidative stress, as preliminary results point to an increase in CCAAT-enhancer-binding protein homologous protein (CHOP) expression. Besides the decrease in cell viability, alterations in cell cycle progression were observed. WIN treatment induced a cell cycle arrest in G0/G1 phase, whereas 2-AG induced a cell cycle arrest in G2/M phase. Here it is reinforced the relevance of cannabinoid signaling in fundamental processes of cell proliferation and cell death in trophoblast cells. Since cannabis-based drugs are the most consumed illicit drugs worldwide and some of the most consumed recreational drugs by pregnant women, this study may contribute to the understanding of the impact of such substances in human reproduction.
Os canabinóides (CBs) podem ser classificados como: fitocanabinóides, os constituintes da planta Cannabis sativa L.; canabinóides sintéticos, sintetizados em laboratório e os endocanabinóides, que são mediadores lipídicos endógenos. Os compostos canabinóides ativam recetores canabinóides – CB1 e CB2. O composto psicoativo mais prevalente é o Δ9-tetrahidrocanabinol (THC), mas mais de 60 diferentes CBs foram já identificados a partir da planta. Os endocanabinóides (eCBs) melhor caracterizados são a anandamida (AEA) e o 2-araquidonoilglicerol (2-AG), que estão envolvidos em vários processos biológicos, incluindo plasticidade sináptica, modulação da dor, homeostasia energética e reprodução. Por outro lado, alguns canabinóides sintéticos, inicialmente projetados para investigação médica, são agora usados como drogas de abuso. Durante o período de desenvolvimento placentário ocorrem processos de remodelação que envolvem proliferação, apoptose, diferenciação e invasão dos trofoblastos. Sabe-se que um controlo rigoroso dos níveis de eCBs é necessário para uma progressão normal da gravidez e que os eCBs estão envolvidos no turnover celular dos trofoblastos. Assim sendo, ao partilharem a ativação dos mesmos recetores, a exposição a exocanabinóides, seja pelo uso recreativo ou medicinal, pode levar a alterações nos níveis de eCBs e na homeostasia do sistema endocanabinóide (ECS). Neste trabalho foi estudado o impacto dos CBs em células trofoblásticas BeWo e em culturas primárias de citotrofoblastos humanos. As células foram tratadas durante 24 horas com diferentes concentrações de THC, do canabinóide sintético WIN-55,212 (WIN) e de 2AG. O tratamento com THC não afetou a viabilidade das células BeWo, enquanto que o WIN e o 2-AG causaram uma perda de viabilidade dependente da dose. Estudos morfológicos, juntamente com marcadores bioquímicos, indicam que o 2-AG é capaz de induzir apoptose em citotrofoblastos. Por outro lado, estudos morfológicos realizados com laranja de acridina sugerem que a autofagia pode estar envolvida na perda de viabilidade induzida pelo WIN. Todos os canabinóides induziram perda de potencial de membrana mitocondrial (Δψm), mas apenas o 2-AG levou a um aumento na formação de ROS/RNS, sem terem sido observadas diferenças nos níveis de glutationa. O stress reticular pode estar envolvido no stress oxidativo induzido pelo 2-AG, visto que resultados preliminares apontam para um aumento na expressão de CCAAT-enhancer-binding protein homologous protein (CHOP). Para além da diminuição da viabilidade celular, os resultados sugerem alterações na progressão do ciclo celular. O tratamento com WIN induziu retenção do ciclo celular em fase G0/G1, enquanto que o 2-AG levou a uma retenção em fase G2/M. Neste trabalho é reforçada a importância da sinalização canabinóide em processos importantes de proliferação e morte celular de células trofoblásticas. Visto que as drogas canabinóides são as mais consumidas a nível mundial, e umas das drogas recreativas mais consumidas pelas mulheres grávidas, este estudo pode contribuir para a compreensão do impacto destas substâncias na reprodução humana.
Wang, Pu. "Synthetic studies on natural products." Thesis, University of Edinburgh, 1995. http://hdl.handle.net/1842/13199.
Full textStephens, Jason L. "Synthetic Cannabinoid Usage among College Students: The Example of K2 and Spice." Thesis, University of North Texas, 2011. https://digital.library.unt.edu/ark:/67531/metadc84283/.
Full textJin, Changdong. "Natural antifungals and their synthetic analogues." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0013/NQ59979.pdf.
Full textPfeiffer, Matthew W. B. "Synthetic studies on cyathane natural products." Diss., Connect to online resource, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3219217.
Full textLiu, Yunqi. "Synthetic approaches toward natural product synthesis." Diss., The University of Arizona, 1995. http://hdl.handle.net/10150/187050.
Full textBelfort, Georges. "Diffusion in synthetic and natural membranes." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-184597.
Full textThornhill, Andrew John. "Synthetic studies towards marine natural products." Thesis, Bangor University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364987.
Full textXiong, Xin. "Synthetic approaches towards heterocyclic natural producers." Thesis, Cardiff University, 2005. http://orca.cf.ac.uk/55520/.
Full textBooks on the topic "Synthetic and natural cannabinoids"
Tyman, J. H. P. Synthetic and natural phenols. Amsterdam [The Netherlands]: Elsevier, 1996.
Find full textClifton, Robert A. Natural and synthetic zeolites. Pittsburgh, Pa: U.S. Dept. of the Interior, Bureau of Mines, 1987.
Find full textClifton, Robert A. Natural and synthetic zeolites. Washington, DC: U.S. Dept. of the Interior, 1987.
Find full textKnutson, Linda. Synthetic dyes for natural fibers. Loveland, Colo: Interweave Press, 1986.
Find full textKrutošíková, A. Natural and synthetic sweet substances. New York: Ellis Horwood, 1992.
Find full textTu, Anthony T., and William Gaffield, eds. Natural and Selected Synthetic Toxins. Washington, DC: American Chemical Society, 1999. http://dx.doi.org/10.1021/bk-2000-0745.
Full textMichal, Uher, and Hudec John, eds. Natural and synthetic sweet substances. New York: Ellis Horwood, 1992.
Find full textKayser, Klaus. Natural and synthetic mineral fibers affecting man. Mannheim: B.I. Wissenschaftsverlag, 1994.
Find full textLazár, M. Chemical reactions of natural and synthetic polymers. Chichester: Horwood, 1989.
Find full textCiferri, A. Ionic interactions in natural and synthetic macromolecules. Hoboken, N.J: Wiley, 2012.
Find full textBook chapters on the topic "Synthetic and natural cannabinoids"
Maul, Corinna, and Bernd Sundermann. "Natural and Synthetic Cannabinoids." In Analgesics, 497–505. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527605614.ch12.
Full textRazdan, Raj K. "The Total Synthesis of Cannabinoids." In Total Synthesis of Natural Products, 185–262. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470129678.ch2.
Full textEllert-Miklaszewska, Aleksandra, Iwona Ciechomska, and Bozena Kaminska. "Glioblastoma: Anti-tumor Action of Natural and Synthetic Cannabinoids." In Tumors of the Central Nervous System, Volume 2, 277–87. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0618-7_29.
Full textMorales, Paula, Israa H. Isawi, and Patricia H. Reggio. "Chapter 5. Natural and Synthetic Cannabinoids Targeting Non-CB1, Non-CB2 G Protein-coupled Receptors." In Drug Discovery, 168–200. Cambridge: Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781839160752-00168.
Full textIliopoulos-Tsoutsouvas, Christos, Markos-Orestis Georgiadis, Lipin Ji, Spyros P. Nikas, and Alexandros Makriyannis. "Chapter 3. Natural Compounds and Synthetic Drugs to Target Type-1 Cannabinoid (CB1) Receptor." In Drug Discovery, 48–88. Cambridge: Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781839160752-00048.
Full textGuba, Wolfgang, Marc Nazaré, and Uwe Grether. "Chapter 4. Natural Compounds and Synthetic Drugs to Target Type-2 Cannabinoid (CB2) Receptor." In Drug Discovery, 89–167. Cambridge: Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781839160752-00089.
Full textCohen, Koby, and Aviv M. Weinstein. "Synthetic Cannabinoids (SCs)." In Psychobiological Issues in Substance Use and Misuse, 125–56. 1 Edition. | New York : Routledge, 2021. | Series: Current issues in psychobiology: Routledge, 2020. http://dx.doi.org/10.4324/9780429296345-7.
Full textGhosh, Dilip. "Cannabis and Cannabinoids." In Natural Medicines, 537–49. Boca Raton : Taylor & Francis, [2019]: CRC Press, 2019. http://dx.doi.org/10.1201/9781315187853-29.
Full textAppendino, Giovanni, and Orazio Taglialatela-Scafati. "Cannabinoids: Chemistry and Medicine." In Natural Products, 3415–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-22144-6_147.
Full textVitale, Rosa Maria, Aniello Schiano Moriello, and Luciano De Petrocellis. "Chapter 6. Natural Compounds and Synthetic Drugs Targeting the Ionotropic Cannabinoid Members of Transient Receptor Potential (TRP) Channels." In Drug Discovery, 201–300. Cambridge: Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781839160752-00201.
Full textConference papers on the topic "Synthetic and natural cannabinoids"
Zirkle, Ross. "Synthetic Biology and Cannabinoids." In Virtual 2020 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2020. http://dx.doi.org/10.21748/am20.168.
Full textIonică, Mihai, Marian Vladescu, Paul Schiopu, Raluca-Andreea Bajanaru, Jeni Carla Colev, Radu Macovei, Monica Ionica Streche, Georgeta Marcela Bican, and Mihai Radu. "Optoelectronic method for the determination of synthetic cannabinoids and their metabolites." In Advanced Topics in Optoelectronics, Microelectronics and Nanotechnologies IX, edited by Ionica Cristea, Marian Vladescu, and Razvan D. Tamas. SPIE, 2018. http://dx.doi.org/10.1117/12.2324798.
Full textEllis, L., E. Samarut, J. Nixon, and P. Drapeau. "Assessing the efficacy of Zebrafish seizure models for testing cannabinoids." In Abstracts of the NHPRS – The 15th Annual Meeting of the Natural Health Products Research Society of Canada (NHPRS). Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1644918.
Full text"A Case Study of the Value-semantic Sphere in Personalities of Synthetic Cannabinoids and Psychostimulants Consumers." In Congress on mental health meeting the needs of the XXI century. Gorodets, 2016. http://dx.doi.org/10.22343/mental-health-congress-compendium117-119.
Full textLouka, Sotiroula, Christiana Neophytou, and Andreas Constantinou. "Abstract 4030: Synthetic cannabinoids AM-251 and AM-1241 induce cell death in prostate cancer cells." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-4030.
Full textAlnasser, Mais, and Hassan Foroosh. "Rendering Synthetic Objects in Natural Scenes." In 2006 International Conference on Image Processing. IEEE, 2006. http://dx.doi.org/10.1109/icip.2006.312434.
Full textOshurkova, Ekaterina Yuryevna, and Valeriya Dmitrievna Zaharko. "Comparing natural and synthetic colorants properties." In III International Research-to-practice Conference, chair Natalya Ehduardovna Dubinina. TSNS Interaktiv Plus, 2016. http://dx.doi.org/10.21661/r-112310.
Full textSIDHU, SACHDEV S. "FROM NATURAL ANTIBODIES TO SYNTHETIC PROTEINS." In 23rd International Solvay Conference on Chemistry. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814603836_0035.
Full textLu, Taijin, James E. Shigley, and John I. Koivula. "Channel structures observed in natural diamonds, synthetic moissanite, and synthetic quartz." In International Symposium on Optical Science and Technology, edited by Angela Duparr and Bhanwar Singh. SPIE, 2002. http://dx.doi.org/10.1117/12.451719.
Full textGenin, Dmitriy E., Dmitriy Petrov, Alexey Zaripov, Evgeniy Lipatov, and Alexander Yelisseyev. "Raman spectroscopy of natural and synthetic diamonds." In XIV International Conference on Pulsed Lasers and Laser Applications (AMPL-2019), edited by Anton V. Klimkin, Victor F. Tarasenko, and Maxim V. Trigub. SPIE, 2019. http://dx.doi.org/10.1117/12.2555046.
Full textReports on the topic "Synthetic and natural cannabinoids"
Cushing, Donish, and Bomi Joseph. Synthetic cannabinoids severely elevate amino transferase levels. Natural cannabidiol does not. Peak Health Center, July 2018. http://dx.doi.org/10.31013/2001e.
Full textWiley, Jenny, Julie Marusich, J. W. Huffman, R. L. Balster, and Brian Thomas. Hijacking of Basic Research: The Case of Synthetic Cannabinoids. Research Triangle Park, NC: RTI Press, November 2011. http://dx.doi.org/10.3768/rtipress.2011.op.0007.1111.
Full textWest, Abby L., Nabila Hoque, Joseph Dougherty, Shashi P. Karna, and Mark H. Griep. Conjugation of the Dark Quencher QSY 7 to Various Synthetic Cannabinoids for Use in Fluorescence-Based Detection Platforms. Fort Belvoir, VA: Defense Technical Information Center, February 2015. http://dx.doi.org/10.21236/ada613664.
Full textJeon, Insik. New Synthetic Methods for Hypericum Natural Products. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/897366.
Full textTsukruk, Vladimir V. Integration of Natural Polymers and Synthetic Nanostructures. Fort Belvoir, VA: Defense Technical Information Center, November 2014. http://dx.doi.org/10.21236/ada614119.
Full textMoody, John. The 1991 Neural Information Processing Systems-natural & Synthetic. Fort Belvoir, VA: Defense Technical Information Center, February 1993. http://dx.doi.org/10.21236/ada264754.
Full textBankova, Vassya, Boryana Trusheva, and Milena Popova. Caffeic Acid Phenethyl Ester (CAPE) – Natural Sources, Analytical Procedures and Synthetic Approaches. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, September 2018. http://dx.doi.org/10.7546/crabs.2018.09.01.
Full textLukowski, T. I., and B. Yue. Synthetic Aperture Radar for Search and Rescue: Studies at Natural Resources Canada-Update. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2003. http://dx.doi.org/10.4095/220009.
Full textLewis, Randolph. X-ray Diffraction and Neutron Scattering Analysis of Natural and Synthetic Spider Silk Fibers. Office of Scientific and Technical Information (OSTI), November 2013. http://dx.doi.org/10.2172/1104739.
Full textMcVey, T. Final Report: Technoeconomic Evaluation of UndergroundCoal Gasification (UCG) for Power Generationand Synthetic Natural Gas. Office of Scientific and Technical Information (OSTI), June 2011. http://dx.doi.org/10.2172/1118020.
Full text