Academic literature on the topic 'Synthetic minority oversampling technique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Synthetic minority oversampling technique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Synthetic minority oversampling technique"
Hooda, Sakshi, and Suman Mann. "Distributed Synthetic Minority Oversampling Technique." International Journal of Computational Intelligence Systems 12, no. 2 (2019): 929. http://dx.doi.org/10.2991/ijcis.d.190719.001.
Full textSuci, Wulan, and Samsudin Samsudin. "Algoritma K-Nearest Neighbors dan Synthetic Minority Oversampling Technique dalam Prediksi Pemesanan Tiket Pesawat." JURNAL MEDIA INFORMATIKA BUDIDARMA 6, no. 3 (2022): 1775. http://dx.doi.org/10.30865/mib.v6i3.4374.
Full textRahardian, Hanif, Mohammad Reza Faisal, Friska Abadi, Radityo Adi Nugroho, and Rudy Herteno. "IMPLEMENTATION OF DATA LEVEL APPROACH TECHNIQUES TO SOLVE UNBALANCED DATA CASE ON SOFTWARE DEFECT CLASSIFICATION." Journal of Data Science and Software Engineering 1, no. 01 (2020): 53–62. http://dx.doi.org/10.20527/jdsse.v1i01.13.
Full textGnip, Peter, Liberios Vokorokos, and Peter Drotár. "Selective oversampling approach for strongly imbalanced data." PeerJ Computer Science 7 (June 18, 2021): e604. http://dx.doi.org/10.7717/peerj-cs.604.
Full textErlin, Erlin, Yenny Desnelita, Nurliana Nasution, Laili Suryati, and Fransiskus Zoromi. "Dampak SMOTE terhadap Kinerja Random Forest Classifier berdasarkan Data Tidak seimbang." MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer 21, no. 3 (2022): 677–90. http://dx.doi.org/10.30812/matrik.v21i3.1726.
Full textVijayvargiya, Ankit, Aparna Sinha, Naveen Gehlot, Ashutosh Jena, Rajesh Kumar, and Kieran Moran. "S-WD-EEMD: A hybrid framework for imbalanced sEMG signal analysis in diagnosis of human knee abnormality." PLOS ONE 19, no. 5 (2024): e0301263. http://dx.doi.org/10.1371/journal.pone.0301263.
Full textViana, Diogo, Maria Teixeira, José Baptista, and Tiago Pinto. "Synthetic minority oversampling technique for synthetic meteorological data generation*." IET Conference Proceedings 2024, no. 29 (2025): 798–802. https://doi.org/10.1049/icp.2024.4759.
Full textAi, Xusheng, Jian Wu, Victor S. Sheng, Pengpeng Zhao, and Zhiming Cui. "Immune Centroids Oversampling Method for Binary Classification." Computational Intelligence and Neuroscience 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/109806.
Full textHanifatul Azizah, Bagus Setya Rintyarna, and Triawan Adi Cahyanto. "Sentimen Analisis Untuk Mengukur Kepercayaan Masyarakat Terhadap Pengadaan Vaksin Covid-19 Berbasis Bernoulli Naive Bayes." BIOS : Jurnal Teknologi Informasi dan Rekayasa Komputer 3, no. 1 (2022): 23–29. http://dx.doi.org/10.37148/bios.v3i1.36.
Full textZhu, Tuanfei, Yaping Lin, and Yonghe Liu. "Synthetic minority oversampling technique for multiclass imbalance problems." Pattern Recognition 72 (December 2017): 327–40. http://dx.doi.org/10.1016/j.patcog.2017.07.024.
Full textDissertations / Theses on the topic "Synthetic minority oversampling technique"
Olaitan, Olubukola. "SCUT-DS: Methodologies for Learning in Imbalanced Data Streams." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37243.
Full textShu-WeiLiao and 廖書緯. "A Local Information Based Synthetic Minority Oversampling Technique for Imbalanced Dataset Learning." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/5mdht9.
Full textLin, Yi-Hsien, and 林宜憲. "Constructing a Credit Risk Assessment Model using Synthetic Minority Over-sampling Technique." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/11786273799598686385.
Full textChen, Shih-Cheng, and 陳世承. "An Improved Synthetic Minority Over-sampling Technique for Imbalanced Data Set Learning." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/9g74vs.
Full text鄒景隆. "Novel sampling methods based on synthetic minority over-sampling technique(SMOTE)for imbalanced data classification." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/ek4vzp.
Full textLimanto, Lisayuri, and 林芳婷. "A Hybrid Inference Model Based on Synthetic Minority Over-sampling Technique and Evolutionary Least Square SVM for Predicting Construction Contractor Default Status." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/46227772514646532070.
Full textTsai, Meng-Fong, and 蔡孟峰. "Application and Study of imbalanced datasets base on Top-N Reverse k-Nearest Neighbor (TRkNN) coupled with Synthetic Minority Over-Sampling Technique (SMOTE)." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/38104987938865711006.
Full textBook chapters on the topic "Synthetic minority oversampling technique"
Zięba, Maciej, Jakub M. Tomczak, and Adam Gonczarek. "RBM-SMOTE: Restricted Boltzmann Machines for Synthetic Minority Oversampling Technique." In Intelligent Information and Database Systems. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15702-3_37.
Full textBarua, Sukarna, Md Monirul Islam, and Kazuyuki Murase. "A Novel Synthetic Minority Oversampling Technique for Imbalanced Data Set Learning." In Neural Information Processing. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24958-7_85.
Full textPatel, Vibha, Jaishree Tailor, and Amit Ganatra. "Handling Class Imbalance in Electroencephalography Data Using Synthetic Minority Oversampling Technique." In Communications in Computer and Information Science. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88244-0_2.
Full textSreelakshmi, S., and S. S. Vinod Chandra. "Landslide Classification Using Deep Convolutional Neural Network with Synthetic Minority Oversampling Technique." In Lecture Notes in Computer Science. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-24848-1_17.
Full textSubudhi, Subhashree, Ram Narayan Patro, and Pradyut Kumar Biswal. "PSO-Based Synthetic Minority Oversampling Technique for Classification of Reduced Hyperspectral Image." In Advances in Intelligent Systems and Computing. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1592-3_48.
Full textXu, Shoukun, Zhibang Li, Baohua Yuan, Gaochao Yang, Xueyuan Wang, and Ning Li. "A No Parameter Synthetic Minority Oversampling Technique Based on Finch for Imbalanced Data." In Lecture Notes in Computer Science. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4752-2_31.
Full textDe Nicolò, Francesco, Marianna La Rocca, Antonio Marrone, et al. "Time Sensitive and Oversampling Learning for Systemic Crisis Forecasting." In New Economic Windows. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-64916-5_9.
Full textZhou, Yan, Murat Kantarcioglu, and Chris Clifton. "On Improving Fairness of AI Models with Synthetic Minority Oversampling Techniques." In Proceedings of the 2023 SIAM International Conference on Data Mining (SDM). Society for Industrial and Applied Mathematics, 2023. http://dx.doi.org/10.1137/1.9781611977653.ch98.
Full textDiallo, Moussa, Abdoulaye Sidibé, and Djibril Diarra. "Imbalanced Data Classification Using Synthetic Minority Oversampling Technique in Stages for a Rice Dataset." In Communications in Computer and Information Science. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-88226-5_25.
Full textSinha, Ayush, Shubham Dwivedi, Sandeep Kumar Shukla, and O. P. Vyas. "Commissioning Random Matrix Theory and Synthetic Minority Oversampling Technique for Power System Faults Detection and Classification." In Communications in Computer and Information Science. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1648-1_43.
Full textConference papers on the topic "Synthetic minority oversampling technique"
Elmangoush, Abdullah M., Hanein O. Hassan, Ayyah A. Fadhl, and Malak Ahmed Alshrif. "Credit Card Fraud Detection Using Synthetic Minority Oversampling Technique and Deep Learning Technique." In 2024 IEEE 7th International Conference on Advanced Technologies, Signal and Image Processing (ATSIP). IEEE, 2024. http://dx.doi.org/10.1109/atsip62566.2024.10638849.
Full textIslam Sajol, Md Saiful, Imtiaz Ahmed, and Quazi Sanjid Mahmud. "Synthetic Minority Oversampling Technique Enhanced Machine Learning Models for Energy Theft Detection." In 2024 IEEE Kansas Power and Energy Conference (KPEC). IEEE, 2024. http://dx.doi.org/10.1109/kpec61529.2024.10676105.
Full textMuhsnHasan, Montater, Meghana A, Panjagari Kavitha, T. Aditya Sai Srinivas, and P. K. Chidambaram. "Predictive Maintenance for IoT-Enabled Wireless Devices Using AdaBoost with Synthetic Minority Oversampling Technique." In 2025 3rd International Conference on Integrated Circuits and Communication Systems (ICICACS). IEEE, 2025. https://doi.org/10.1109/icicacs65178.2025.10967754.
Full textSaheed, Yakub Kayode, Sulaiman Olaniyi Abdulsalam, Mohammed Babatunde Ibrahim, and Usman Ahmad Baba. "Towards a New Hybrid Synthetic Minority Oversampling Technique for Imbalanced Problem in Software Defect Prediction." In 2024 5th International Conference on Data Analytics for Business and Industry (ICDABI). IEEE, 2024. https://doi.org/10.1109/icdabi63787.2024.10800331.
Full textSugitha, I. Putu Yoga Tunas, Fitra Abdurrachman Bachtiar, and Satrio Agung Wicaksono. "Application of Students Graduation Prediction Model Using Decision Tree C4.5 Algorithm and Synthetic Minority Oversampling Technique (SMOTE)." In 2024 Seventh International Conference on Vocational Education and Electrical Engineering (ICVEE). IEEE, 2024. https://doi.org/10.1109/icvee63912.2024.10823806.
Full textSaheed, Yakub Kayode, Oluwadamilare Harazeem Abdulganiyu, Mustapha Abdulsalam, Musa Mustapha, Mekila Mbayam Olivier, and Kaloma Usman Majikumna. "A Hybrid Ant Colony Optimization for Parkinson’s Disease Classification Based on Synthetic Minority Oversampling and Adaptive Synthetic Techniques." In 2024 5th International Conference on Data Analytics for Business and Industry (ICDABI). IEEE, 2024. https://doi.org/10.1109/icdabi63787.2024.10800028.
Full textHossain Raju, Md Azad, Touhid Imam, Jahirul Islam, Abdullah Al Rakin, Mohammad Navid Nayyem, and Mohammad Shihab Uddin. "An Ontological Framework for Lung Carcinoma Prognostication via Sophisticated Stacking and Synthetic Minority Oversampling Techniques." In 2024 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob). IEEE, 2024. https://doi.org/10.1109/apwimob64015.2024.10792946.
Full textSanti, Rahmatika Pratama, Fajril Akbar, and Febby P. M. Piter. "A Comparative Study of Machine Learning Algorithm for Sentiment Analysis Using Word2Vec and Synthetic Minority Oversampling Technique (SMOTE) on COVID-19 Vaccination Program." In 2024 2nd International Symposium on Information Technology and Digital Innovation (ISITDI). IEEE, 2024. https://doi.org/10.1109/isitdi62380.2024.10796415.
Full textMasud, Md Abdullah Al, Alazar Araia, Yuxin Wang, Jianli Hu, and Yuhe Tian. "Machine Learning-Aided Process Design for Microwave-Assisted Ammonia Production." In Foundations of Computer-Aided Process Design. PSE Press, 2024. http://dx.doi.org/10.69997/sct.121422.
Full textK, Manjula Shenoy, and R. Srinivas Prabhu. "A comparative Analysis of ensemble methods and their efficiency in the classification of ‘HIT AND RUN’ cases in an imbalanced dataset (Traffic Crashes) with and without using "Synthetic minority oversampling technique"." In 2023 33rd International Conference on Computer Theory and Applications (ICCTA). IEEE, 2023. https://doi.org/10.1109/iccta60978.2023.10969264.
Full textReports on the topic "Synthetic minority oversampling technique"
Ogunbire, Abimbola, Panick Kalambay, Hardik Gajera, and Srinivas Pulugurtha. Deep Learning, Machine Learning, or Statistical Models for Weather-related Crash Severity Prediction. Mineta Transportation Institute, 2023. http://dx.doi.org/10.31979/mti.2023.2320.
Full text