Journal articles on the topic 'Synthetic minority oversampling technique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Synthetic minority oversampling technique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hooda, Sakshi, and Suman Mann. "Distributed Synthetic Minority Oversampling Technique." International Journal of Computational Intelligence Systems 12, no. 2 (2019): 929. http://dx.doi.org/10.2991/ijcis.d.190719.001.
Full textSuci, Wulan, and Samsudin Samsudin. "Algoritma K-Nearest Neighbors dan Synthetic Minority Oversampling Technique dalam Prediksi Pemesanan Tiket Pesawat." JURNAL MEDIA INFORMATIKA BUDIDARMA 6, no. 3 (2022): 1775. http://dx.doi.org/10.30865/mib.v6i3.4374.
Full textRahardian, Hanif, Mohammad Reza Faisal, Friska Abadi, Radityo Adi Nugroho, and Rudy Herteno. "IMPLEMENTATION OF DATA LEVEL APPROACH TECHNIQUES TO SOLVE UNBALANCED DATA CASE ON SOFTWARE DEFECT CLASSIFICATION." Journal of Data Science and Software Engineering 1, no. 01 (2020): 53–62. http://dx.doi.org/10.20527/jdsse.v1i01.13.
Full textGnip, Peter, Liberios Vokorokos, and Peter Drotár. "Selective oversampling approach for strongly imbalanced data." PeerJ Computer Science 7 (June 18, 2021): e604. http://dx.doi.org/10.7717/peerj-cs.604.
Full textErlin, Erlin, Yenny Desnelita, Nurliana Nasution, Laili Suryati, and Fransiskus Zoromi. "Dampak SMOTE terhadap Kinerja Random Forest Classifier berdasarkan Data Tidak seimbang." MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer 21, no. 3 (2022): 677–90. http://dx.doi.org/10.30812/matrik.v21i3.1726.
Full textVijayvargiya, Ankit, Aparna Sinha, Naveen Gehlot, Ashutosh Jena, Rajesh Kumar, and Kieran Moran. "S-WD-EEMD: A hybrid framework for imbalanced sEMG signal analysis in diagnosis of human knee abnormality." PLOS ONE 19, no. 5 (2024): e0301263. http://dx.doi.org/10.1371/journal.pone.0301263.
Full textViana, Diogo, Maria Teixeira, José Baptista, and Tiago Pinto. "Synthetic minority oversampling technique for synthetic meteorological data generation*." IET Conference Proceedings 2024, no. 29 (2025): 798–802. https://doi.org/10.1049/icp.2024.4759.
Full textAi, Xusheng, Jian Wu, Victor S. Sheng, Pengpeng Zhao, and Zhiming Cui. "Immune Centroids Oversampling Method for Binary Classification." Computational Intelligence and Neuroscience 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/109806.
Full textHanifatul Azizah, Bagus Setya Rintyarna, and Triawan Adi Cahyanto. "Sentimen Analisis Untuk Mengukur Kepercayaan Masyarakat Terhadap Pengadaan Vaksin Covid-19 Berbasis Bernoulli Naive Bayes." BIOS : Jurnal Teknologi Informasi dan Rekayasa Komputer 3, no. 1 (2022): 23–29. http://dx.doi.org/10.37148/bios.v3i1.36.
Full textZhu, Tuanfei, Yaping Lin, and Yonghe Liu. "Synthetic minority oversampling technique for multiclass imbalance problems." Pattern Recognition 72 (December 2017): 327–40. http://dx.doi.org/10.1016/j.patcog.2017.07.024.
Full textZhang, Yining. "Machine learning with oversampling for space debris classification based on radar cross section." Applied and Computational Engineering 49, no. 1 (2024): 102–8. http://dx.doi.org/10.54254/2755-2721/49/20241070.
Full textSaputra, Pramana Yoga, Moch Zawaruddin Abdullah, and Annisa Puspa Kirana. "Improvisasi Teknik Oversampling MWMOTE Untuk Penanganan Data Tidak Seimbang." JURNAL MEDIA INFORMATIKA BUDIDARMA 5, no. 2 (2021): 398. http://dx.doi.org/10.30865/mib.v5i2.2811.
Full textMustaqim, Mustaqim, Budi Warsito, and Bayu Surarso. "COMBINATION OF SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE (SMOTE) AND BACKPROPAGATION NEURAL NETWORK TO CONTRACEPTIVE IUD PREDICTION." MEDIA STATISTIKA 13, no. 1 (2020): 36–46. http://dx.doi.org/10.14710/medstat.13.1.36-46.
Full textSantoso, Noviyanti, Wahyu Wibowo, and Hilda Hikmawati. "Integration of synthetic minority oversampling technique for imbalanced class." Indonesian Journal of Electrical Engineering and Computer Science 13, no. 1 (2019): 102. http://dx.doi.org/10.11591/ijeecs.v13.i1.pp102-108.
Full textSantoso, Noviyanti, Wahyu Wibowo, and Hilda Hikmawati. "Integration of synthetic minority oversampling technique for imbalanced class." Indonesian Journal of Electrical Engineering and Computer Science 13, no. 1 (2019): 102–8. https://doi.org/10.11591/ijeecs.v13.i1.pp102-108.
Full textAnju Fauziah and Julan Hernadi. "Klasifikasi Data Tak Seimbang Menggunakan Algoritma Random Forest dengan SMOTE dan SMOTE-ENN." Teknomatika: Jurnal Informatika dan Komputer 17, no. 2 (2025): 38–47. https://doi.org/10.30989/teknomatika.v17i2.1530.
Full textJin, Dian, Dehong Xie, Di Liu, and Murong Gong. "Clustering-based improved adaptive synthetic minority oversampling technique for imbalanced data classification." Intelligent Data Analysis 27, no. 3 (2023): 635–52. http://dx.doi.org/10.3233/ida-226612.
Full textSun, Maohua, Ruidi Yang, and Mengying Liu. "Privacy-Preserving Minority Oversampling Protocols with Fully Homomorphic Encryption." Security and Communication Networks 2022 (March 10, 2022): 1–9. http://dx.doi.org/10.1155/2022/3068199.
Full textHAJJAOUI, Btıssam. "Crucial Challenges In Corporate Credit Risk Assessment: A Case Study." Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 7, no. 2 (2024): 834–54. http://dx.doi.org/10.47495/okufbed.1340798.
Full textSumantiawan, Dody Indra, Jatmiko Endro Suseno, and Wahyul Amien Syafei. "Sentiment Analysis of Customer Reviews Using Support Vector Machine and Smote-Tomek Links For Identify Customer Satisfaction." J. Sistem Info. Bisnis 13, no. 1 (2023): 1–9. http://dx.doi.org/10.21456/vol13iss1pp1-9.
Full textJiang, Liangxiao, Chen Qiu, and Chaoqun Li. "A Novel Minority Cloning Technique for Cost-Sensitive Learning." International Journal of Pattern Recognition and Artificial Intelligence 29, no. 04 (2015): 1551004. http://dx.doi.org/10.1142/s0218001415510040.
Full textZhang, Dong, Xiang Huang, Gen Li, Shengjie Kong, and Liang Dong. "MWMOTE-FRIS-INFFC: An Improved Majority Weighted Minority Oversampling Technique for Solving Noisy and Imbalanced Classification Datasets." Applied Sciences 15, no. 9 (2025): 4670. https://doi.org/10.3390/app15094670.
Full textAntonio, Roy, and Hironimus Leong. "PERFORMANCE OF SYNTHETIC MINORITY OVER-SAMPLING TECHNIQUE ON SUPPORT VECTOR MACHINE AND K-NEAREST NEIGHBOR FOR SENTIMENT ANALYSIS OF METAVERSE IN INDONESIA." Proxies : Jurnal Informatika 6, no. 2 (2024): 160–70. http://dx.doi.org/10.24167/proxies.v6i2.12459.
Full textCinar, Ahmet Cevahir. "A synergistic oversampling technique with differential evolution and safe level synthetic minority oversampling." Applied Soft Computing 172 (March 2025): 112819. https://doi.org/10.1016/j.asoc.2025.112819.
Full textMia, Rajib, Shapla Khanam, Amira Mahjabeen, et al. "Exploring Machine Learning for Predicting Cerebral Stroke: A Study in Discovery." Electronics 13, no. 4 (2024): 686. http://dx.doi.org/10.3390/electronics13040686.
Full textRaveendhran, Nareshkumar, and Nimala Krishnan. "A novel hybrid SMOTE oversampling approach for balancing class distribution on social media text." Bulletin of Electrical Engineering and Informatics 14, no. 1 (2025): 638–46. http://dx.doi.org/10.11591/eei.v14i1.8380.
Full textXiong, Chuang, Runhan Zhao, Jingtao Xu, et al. "Construct and Validate a Predictive Model for Surgical Site Infection after Posterior Lumbar Interbody Fusion Based on Machine Learning Algorithm." Computational and Mathematical Methods in Medicine 2022 (August 23, 2022): 1–11. http://dx.doi.org/10.1155/2022/2697841.
Full textMaradana Durga Venkata Prasad. "Multi-Entity Real-Time Fraud Detection System using Machine Learning: Improving Fraud Detection Efficiency using FROST-Enhanced Oversampling." Journal of Electrical Systems 20, no. 7s (2024): 1380–94. http://dx.doi.org/10.52783/jes.3710.
Full textAlharbi, Fayez, Lahcen Ouarbya, and Jamie A. Ward. "Comparing Sampling Strategies for Tackling Imbalanced Data in Human Activity Recognition." Sensors 22, no. 4 (2022): 1373. http://dx.doi.org/10.3390/s22041373.
Full textAyesha Shakith and L. Arockiam. "EMSMOTE: Ensemble multiclass synthetic minority oversampling technique to improve accuracy of multilingual sentiment analysis on imbalance data." Scientific Temper 15, no. 04 (2024): 3099–104. https://doi.org/10.58414/scientifictemper.2024.15.4.17.
Full textA, Krishnapriya, and al. et. "Machine Learning For Medicare Fraud Detection: Tackling Class Imbalance With SMOTE-ENN." International Journal of Computational Learning & Intelligence 4, no. 4 (2025): 716–24. https://doi.org/10.5281/zenodo.15251088.
Full textDjafar, Nur Mutmainnah, and Achmad Fauzan. "Implementation of K-Nearest Neighbor using the oversampling technique on mixed data for the classification of household welfare status." Statistics in Transition new series 25, no. 1 (2024): 109–24. http://dx.doi.org/10.59170/stattrans-2024-007.
Full textPurnawan, I. Ketut Adi, Adhi Dharma Wibawa, Arik Kurniawati, and Mauridhi Hery Purnomo. "Optimizing Diabetic Neuropathy Severity Classification Using Electromyography Signals Through Synthetic Oversampling Techniques." Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) 13, no. 3 (2024): 681–90. https://doi.org/10.23887/janapati.v13i3.85675.
Full textMuhammad, Rizky Pribadi, Dwi Purnomo Hindriyanto, and Hendry Hendry. "A three-step combination strategy for addressing outliers and class imbalance in software defect prediction." IAES International Journal of Artificial Intelligence (IJ-AI) 13, no. 3 (2024): 2987–98. https://doi.org/10.11591/ijai.v13.i3.pp2987-2998.
Full textNguyen, Teo, Kerrie Mengersen, Damien Sous, and Benoit Liquet. "SMOTE-CD: SMOTE for compositional data." PLOS ONE 18, no. 6 (2023): e0287705. http://dx.doi.org/10.1371/journal.pone.0287705.
Full textChin, F. Y., C. A. Lim, and K. H. Lem. "Handling leukaemia imbalanced data using synthetic minority oversampling technique (SMOTE)." Journal of Physics: Conference Series 1988, no. 1 (2021): 012042. http://dx.doi.org/10.1088/1742-6596/1988/1/012042.
Full textChamorro-Atalaya, Omar, Florcita Aldana-Trejo, Nestor Alvarado-Bravo, et al. "Student Satisfaction Classification Algorithm Using the Minority Synthetic Oversampling Technique." International Journal of Information and Education Technology 13, no. 7 (2023): 1094–100. http://dx.doi.org/10.18178/ijiet.2023.13.7.1909.
Full textAlkhawaldeh, Ibraheem M., Ibrahem Albalkhi, and Abdulqadir Jeprel Naswhan. "Challenges and limitations of synthetic minority oversampling techniques in machine learning." World Journal of Methodology 13, no. 5 (2023): 373–78. http://dx.doi.org/10.5662/wjm.v13.i5.373.
Full textPutra, Muhammad Akmal A., Suwarno, and Rahman Azis Prasojo. "Improving Transformer Health Index Prediction Performance Using Machine Learning Algorithms with a Synthetic Minority Oversampling Technique." Energies 18, no. 9 (2025): 2364. https://doi.org/10.3390/en18092364.
Full textChang, Young-Soo, Hee-Sung Park, and Il-Joon Moon. "Predicting the Cochlear Dead Regions Using a Machine Learning-Based Approach with Oversampling Techniques." Medicina 57, no. 11 (2021): 1192. http://dx.doi.org/10.3390/medicina57111192.
Full textBansal, Ankita, Makul Saini, Rakshit Singh, and Jai Kumar Yadav. "Analysis of SMOTE." International Journal of Information Retrieval Research 11, no. 2 (2021): 15–37. http://dx.doi.org/10.4018/ijirr.2021040102.
Full textAnis, Maira, and Mohsin Ali. "Investigating the Performance of Smote for Class Imbalanced Learning: A Case Study of Credit Scoring Datasets." European Scientific Journal, ESJ 13, no. 33 (2017): 340. http://dx.doi.org/10.19044/esj.2017.v13n33p340.
Full textLiu, Ankang, Lingfei Cheng, and Changdong Yu. "SASMOTE: A Self-Attention Oversampling Method for Imbalanced CSI Fingerprints in Indoor Positioning Systems." Sensors 22, no. 15 (2022): 5677. http://dx.doi.org/10.3390/s22155677.
Full textWiharto, Wiharto, and Angga Exca Pradipta Syaifuddin. "Squeeze-excitation half U-Net and synthetic minority oversampling technique oversampling for papilledema image classification." IAES International Journal of Artificial Intelligence (IJ-AI) 14, no. 2 (2025): 1410. https://doi.org/10.11591/ijai.v14.i2.pp1410-1419.
Full textWiharto, Wiharto, and Exca Pradipta Syaifuddin Angga. "Squeeze-excitation half U-Net and synthetic minority oversampling technique oversampling for papilledema image classification." IAES International Journal of Artificial Intelligence (IJ-AI) 14, no. 2 (2025): 1410–19. https://doi.org/10.11591/ijai.v14.i2.pp1410-1419.
Full textHu, Libin, and Yunfeng Zhang. "GDSMOTE: A Novel Synthetic Oversampling Method for High-Dimensional Imbalanced Financial Data." Mathematics 12, no. 24 (2024): 4036. https://doi.org/10.3390/math12244036.
Full textTekkali, Chandana Gouri, and Karthika Natarajan. "An advancement in AdaSyn for imbalanced learning: An application to fraud detection in digital transactions." Journal of Intelligent & Fuzzy Systems 46, no. 5-6 (2024): 11381–96. http://dx.doi.org/10.3233/jifs-236392.
Full textGao, Kehan, Taghi M. Khoshgoftaar, and Amri Napolitano. "An Empirical Investigation of Combining Filter-Based Feature Subset Selection and Data Sampling for Software Defect Prediction." International Journal of Reliability, Quality and Safety Engineering 22, no. 06 (2015): 1550027. http://dx.doi.org/10.1142/s0218539315500278.
Full textLi, Der-Chiang, Ssu-Yang Wang, Kuan-Cheng Huang, and Tung-I. Tsai. "Learning class-imbalanced data with region-impurity synthetic minority oversampling technique." Information Sciences 607 (August 2022): 1391–407. http://dx.doi.org/10.1016/j.ins.2022.06.067.
Full textLi, Yihong, Yunpeng Wang, Tao Li, Beibei Li, and Xiaolong Lan. "SP-SMOTE: A novel space partitioning based synthetic minority oversampling technique." Knowledge-Based Systems 228 (September 2021): 107269. http://dx.doi.org/10.1016/j.knosys.2021.107269.
Full text