Academic literature on the topic 'Syntrophin'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Syntrophin.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Syntrophin"

1

Peters, Matthew F., Marvin E. Adams, and Stanley C. Froehner. "Differential Association of Syntrophin Pairs with the Dystrophin Complex." Journal of Cell Biology 138, no. 1 (July 14, 1997): 81–93. http://dx.doi.org/10.1083/jcb.138.1.81.

Full text
Abstract:
The syntrophins are a multigene family of intracellular dystrophin-associated proteins comprising three isoforms, α1, β1, and β2. Based on their domain organization and association with neuronal nitric oxide synthase, syntrophins are thought to function as modular adapters that recruit signaling proteins to the membrane via association with the dystrophin complex. Using sequences derived from a new mouse β1-syntrophin cDNA, and previously isolated cDNAs for α1- and β2-syntrophins, we prepared isoform-specific antibodies to study the expression, skeletal muscle localization, and dystrophin family association of all three syntrophins. Most tissues express multiple syntrophin isoforms. In mouse gastrocnemius skeletal muscle, α1- and β1-syntrophin are concentrated at the neuromuscular junction but are also present on the extrasynaptic sarcolemma. β1-syntrophin is restricted to fast-twitch muscle fibers, the first fibers to degenerate in Duchenne muscular dystrophy. β2-syntrophin is largely restricted to the neuromuscular junction. The sarcolemmal distribution of α1- and β1-syntrophins suggests association with dystrophin and dystrobrevin, whereas all three syntrophins could potentially associate with utrophin at the neuromuscular junction. Utrophin complexes immunoisolated from skeletal muscle are highly enriched in β1- and β2-syntrophins, while dystrophin complexes contain mostly α1- and β1-syntrophins. Dystrobrevin complexes contain dystrophin and α1- and β1-syntrophins. From these results, we propose a model in which a dystrophin–dystrobrevin complex is associated with two syntrophins. Since individual syntrophins do not have intrinsic binding specificity for dystrophin, dystrobrevin, or utrophin, the observed preferential pairing of syntrophins must depend on extrinsic regulatory mechanisms.
APA, Harvard, Vancouver, ISO, and other styles
2

Adams, Marvin E., Neal Kramarcy, Stuart P. Krall, Susana G. Rossi, Richard L. Rotundo, Robert Sealock, and Stanley C. Froehner. "Absence of α-Syntrophin Leads to Structurally Aberrant Neuromuscular Synapses Deficient in Utrophin." Journal of Cell Biology 150, no. 6 (September 18, 2000): 1385–98. http://dx.doi.org/10.1083/jcb.150.6.1385.

Full text
Abstract:
The syntrophins are a family of structurally related proteins that contain multiple protein interaction motifs. Syntrophins associate directly with dystrophin, the product of the Duchenne muscular dystrophy locus, and its homologues. We have generated α-syntrophin null mice by targeted gene disruption to test the function of this association. The α-Syn−/− mice show no evidence of myopathy, despite reduced levels of α-dystrobrevin–2. Neuronal nitric oxide synthase, a component of the dystrophin protein complex, is absent from the sarcolemma of the α-Syn−/− mice, even where other syntrophin isoforms are present. α-Syn−/− neuromuscular junctions have undetectable levels of postsynaptic utrophin and reduced levels of acetylcholine receptor and acetylcholinesterase. The mutant junctions have shallow nerve gutters, abnormal distributions of acetylcholine receptors, and postjunctional folds that are generally less organized and have fewer openings to the synaptic cleft than controls. Thus, α-syntrophin has an important role in synapse formation and in the organization of utrophin, acetylcholine receptor, and acetylcholinesterase at the neuromuscular synapse.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhou, Yan Wen, Shilpa A. Oak, Susan E. Senogles, and Harry W. Jarrett. "Laminin-α1 globular domains 3 and 4 induce heterotrimeric G protein binding to α-syntrophin's PDZ domain and alter intracellular Ca2+ in muscle." American Journal of Physiology-Cell Physiology 288, no. 2 (February 2005): C377—C388. http://dx.doi.org/10.1152/ajpcell.00279.2004.

Full text
Abstract:
α-Syntrophin is a component of the dystrophin glycoprotein complex (DGC). It is firmly attached to the dystrophin cytoskeleton via a unique COOH-terminal domain and is associated indirectly with α-dystroglycan, which binds to extracellular matrix laminin. Syntrophin contains two pleckstrin homology (PH) domains and one PDZ domain. Because PH domains of other proteins are known to bind the βγ-subunits of the heterotrimeric G proteins, whether this is also a property of syntrophin was investigated. Isolated syntrophin from rabbit skeletal muscle binds bovine brain Gβγ-subunits in gel blot overlay experiments. Laminin-1-Sepharose or specific antibodies against syntrophin, α- and β-dystroglycan, or dystrophin precipitate a complex with Gβγ from crude skeletal muscle microsomes. Bacterially expressed syntrophin fusion proteins and truncation mutants allowed mapping of Gβγ binding to syntrophin's PDZ domain; this is a novel function for PDZ domains. When laminin-1 is bound, maximal binding of Gsα and Gβγ occurs and active Gsα, measured as GTP-γ35S bound, decreases. Because intracellular Ca2+ is elevated in Duchenne muscular dystrophy and Gsα is known to activate the dihydropyridine receptor Ca2+ channel, whether laminin also altered intracellular Ca2+ was investigated. Laminin-1 decreases active (GTP-γS-bound) Gsα, and the Ca2+ channel is inhibited by laminin-1. The laminin α1-chain globular domains 4 and 5 region, the region bound by DGC α-dystroglycan, is sufficient to cause an effect, and an antibody that specifically blocks laminin binding to α-dystroglycan inhibits Gβ binding by syntrophin in C2C12 myotubes. These observations suggest that DGC is a matrix laminin, G protein-coupled receptor.
APA, Harvard, Vancouver, ISO, and other styles
4

Adams, Marvin E., Heather A. Mueller, and Stanley C. Froehner. "In vivo requirement of the α-syntrophin PDZ domain for the sarcolemmal localization of nNOS and aquaporin-4." Journal of Cell Biology 155, no. 1 (September 24, 2001): 113–22. http://dx.doi.org/10.1083/jcb.200106158.

Full text
Abstract:
α-Syntrophin is a scaffolding adapter protein expressed primarily on the sarcolemma of skeletal muscle. The COOH-terminal half of α-syntrophin binds to dystrophin and related proteins, leaving the PSD-95, discs-large, ZO-1 (PDZ) domain free to recruit other proteins to the dystrophin complex. We investigated the function of the PDZ domain of α-syntrophin in vivo by generating transgenic mouse lines expressing full-length α-syntrophin or a mutated α-syntrophin lacking the PDZ domain (ΔPDZ). The ΔPDZ α-syntrophin displaced endogenous α- and β1-syntrophin from the sarcolemma and resulted in sarcolemma containing little or no syntrophin PDZ domain. As a consequence, neuronal nitric oxide synthase (nNOS) and aquaporin-4 were absent from the sarcolemma. However, the sarcolemmal expression and distribution of muscle sodium channels, which bind the α-syntrophin PDZ domain in vitro, were not altered. Both transgenic mouse lines were bred with an α-syntrophin–null mouse which lacks sarcolemmal nNOS and aquaporin-4. The full-length α-syntrophin, not the ΔPDZ form, reestablished nNOS and aquaporin-4 at the sarcolemma of these mice. Genetic crosses with the mdx mouse showed that neither transgenic syntrophin could associate with the sarcolemma in the absence of dystrophin. Together, these data show that the sarcolemmal localization of nNOS and aquaporin-4 in vivo depends on the presence of a dystrophin-bound α-syntrophin PDZ domain.
APA, Harvard, Vancouver, ISO, and other styles
5

Peters, Matthew F., Neal R. Kramarcy, Robert Sealock, and Stanley C. Froehner. "β2-Syntrophin." NeuroReport 5, no. 13 (August 1994): 1577–80. http://dx.doi.org/10.1097/00001756-199408150-00009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yakubchyk, Yury, Hanan Abramovici, Jean-Christian Maillet, Elias Daher, Christopher Obagi, Robin J. Parks, Matthew K. Topham, and Stephen H. Gee. "Regulation of Neurite Outgrowth in N1E-115 Cells through PDZ-Mediated Recruitment of Diacylglycerol Kinase ζ." Molecular and Cellular Biology 25, no. 16 (August 15, 2005): 7289–302. http://dx.doi.org/10.1128/mcb.25.16.7289-7302.2005.

Full text
Abstract:
ABSTRACT Syntrophins are scaffold proteins that regulate the subcellular localization of diacylglycerol kinase ζ (DGK-ζ), an enzyme that phosphorylates the lipid second-messenger diacylglycerol to yield phosphatidic acid. DGK-ζ and syntrophins are abundantly expressed in neurons of the developing and adult brain, but their function is unclear. Here, we show that they are present in cell bodies, neurites, and growth cones of cultured cortical neurons and differentiated N1E-115 neuroblastoma cells. Overexpression of DGK-ζ in N1E-115 cells induced neurite formation in the presence of serum, which normally prevents neurite outgrowth. This effect was independent of DGK-ζ kinase activity but dependent on a functional C-terminal PDZ-binding motif, which specifically interacts with syntrophin PDZ domains. DGK-ζ mutants with a blocked C terminus acted as dominant-negative inhibitors of outgrowth from serum-deprived N1E-115 cells and cortical neurons. Several lines of evidence suggest DGK-ζ promotes neurite outgrowth through association with the GTPase Rac1. DGK-ζ colocalized with Rac1 in neuronal processes and DGK-ζ-induced outgrowth was inhibited by dominant-negative Rac1. Moreover, DGK-ζ directly interacts with Rac1 through a binding site located within its C1 domains. Together with syntrophin, these proteins form a tertiary complex in N1E-115 cells. A DGK-ζ mutant that mimics phosphorylation of the MARCKS domain was unable to bind an activated Rac1 mutant (Rac1V12) and phorbol myristate acetate-induced protein kinase C activation inhibited the interaction of DGK-ζ with Rac1V12, suggesting protein kinase C-mediated phosphorylation of the MARCKS domain negatively regulates DGK-ζ binding to active Rac1. Collectively, these findings suggest DGK-ζ, syntrophin, and Rac1 form a regulated signaling complex that controls polarized outgrowth in neuronal cells.
APA, Harvard, Vancouver, ISO, and other styles
7

Suzuki, A., M. Yoshida, and E. Ozawa. "Mammalian alpha 1- and beta 1-syntrophin bind to the alternative splice-prone region of the dystrophin COOH terminus." Journal of Cell Biology 128, no. 3 (February 1, 1995): 373–81. http://dx.doi.org/10.1083/jcb.128.3.373.

Full text
Abstract:
The carboxy-terminal region of dystrophin has been suggested to be crucially important for its function to prevent muscle degeneration. We have previously shown that this region is the locus that interacts with the sarcolemmal glycoprotein complex, which mediates membrane anchoring of dystrophin, as well as with the cytoplasmic peripheral membrane protein, A0 and beta 1-syntrophin (Suzuki, A., M. Yoshida, K. Hayashi, Y. Mizuno, Y. Hagiwara, and E. Ozawa. 1994. Eur. J. Biochem. 220:283-292). In this work, by using the overlay assay technique developed previously, we further analyzed the dystrophin-syntrophin/A0 interaction. Two forms of mammalian syntrophin, alpha 1- and beta 1-syntrophin, were found to bind to very close but discrete regions on the dystrophin molecule. Their binding sites are located at the vicinity of the glycoprotein-binding site, and correspond to the amino acid residues encoded by exons 73-74 which are alternatively spliced out in some isoforms. This suggests that the function of syntrophin is tightly linked to the functional diversity among dystrophin isoforms. Pathologically, it is important that the binding site for alpha 1-syntrophin, which is predominantly expressed in skeletal muscle, coincides with the region whose deletion was suggested to result in a severe phenotype. In addition, A0, a minor component of dystrophin-associated proteins with a molecular mass of 94 kD which is immunochemically related to syntrophin, binds to the same site as beta 1-syntrophin. Finally, based on our accumulated evidence, we propose a revised model of the domain organization of dystrophin from the view point of protein-protein interactions.
APA, Harvard, Vancouver, ISO, and other styles
8

Kachinsky, Amy M., Stanley C. Froehner, and Sharon L. Milgram. "A PDZ-containing Scaffold Related to the Dystrophin Complex at the Basolateral Membrane of Epithelial Cells." Journal of Cell Biology 145, no. 2 (April 19, 1999): 391–402. http://dx.doi.org/10.1083/jcb.145.2.391.

Full text
Abstract:
Membrane scaffolding complexes are key features of many cell types, serving as specialized links between the extracellular matrix and the actin cytoskeleton. An important scaffold in skeletal muscle is the dystrophin-associated protein complex. One of the proteins bound directly to dystrophin is syntrophin, a modular protein comprised entirely of interaction motifs, including PDZ (protein domain named for PSD-95, discs large, ZO-1) and pleckstrin homology (PH) domains. In skeletal muscle, the syntrophin PDZ domain recruits sodium channels and signaling molecules, such as neuronal nitric oxide synthase, to the dystrophin complex. In epithelia, we identified a variation of the dystrophin complex, in which syntrophin, and the dystrophin homologues, utrophin and dystrobrevin, are restricted to the basolateral membrane. We used exogenously expressed green fluorescent protein (GFP)-tagged fusion proteins to determine which domains of syntrophin are responsible for its polarized localization. GFP-tagged full-length syntrophin targeted to the basolateral membrane, but individual domains remained in the cytoplasm. In contrast, the second PH domain tandemly linked to a highly conserved, COOH-terminal region was sufficient for basolateral membrane targeting and association with utrophin. The results suggest an interaction between syntrophin and utrophin that leaves the PDZ domain of syntrophin available to recruit additional proteins to the epithelial basolateral membrane. The assembly of multiprotein signaling complexes at sites of membrane specialization may be a widespread function of dystrophin-related protein complexes.
APA, Harvard, Vancouver, ISO, and other styles
9

Ahn, A. H., and L. M. Kunkel. "Syntrophin binds to an alternatively spliced exon of dystrophin." Journal of Cell Biology 128, no. 3 (February 1, 1995): 363–71. http://dx.doi.org/10.1083/jcb.128.3.363.

Full text
Abstract:
Dystrophin, the protein product of the Duchenne muscular dystrophy locus, is a protein of the membrane cytoskeleton that associates with a complex of integral and membrane-associated proteins. Of these, the 58-kD intracellular membrane-associated protein, syntrophin, was recently shown to consist of a family of three related but distinct genes. We expressed the cDNA of human beta 1-syntrophin and the COOH terminus of human dystrophin in reticulocyte lysates using an in vitro transcription/translation system. Using antibodies to dystrophin we immunoprecipitated these two interacting proteins in a variety of salt and detergent conditions. We demonstrate that the 53 amino acids encoded on exon 74 of dystrophin, an alternatively spliced exon, are necessary and sufficient for interaction with translated beta 1-syntrophin in our assay. On the basis of its alternative splicing, dystrophin may thus be present in two functionally distinct populations. In this recombinant expression system, the dystrophin relatives, human dystrophin related protein (DRP or utrophin) and the 87K postsynaptic protein from Torpedo electric organ, also bind to translated beta 1-syntrophin. We have found a COOH-terminal 37-kD fragment of beta 1-syntrophin sufficient to interact with translated dystrophin and its homologues, suggesting that the dystrophin binding site on beta 1-syntrophin occurs on a region that is conserved among the three syntrophin homologues.
APA, Harvard, Vancouver, ISO, and other styles
10

Luo, Shuo, Yu Chen, Kwok-On Lai, Juan Carlos Arévalo, Stanley C. Froehner, Marvin E. Adams, Moses V. Chao, and Nancy Y. Ip. "α-Syntrophin regulates ARMS localization at the neuromuscular junction and enhances EphA4 signaling in an ARMS-dependent manner." Journal of Cell Biology 169, no. 5 (June 6, 2005): 813–24. http://dx.doi.org/10.1083/jcb.200412008.

Full text
Abstract:
EphA4 signaling has recently been implicated in the regulation of synapse formation and plasticity. In this study, we show that ankyrin repeat-rich membrane spanning (ARMS; also known as a kinase D–interacting substrate of 220 kD), a substrate for ephrin and neurotrophin receptors, was expressed in developing muscle and was concentrated at the neuromuscular junction (NMJ). Using yeast two-hybrid screening, we identified a PDZ (PSD-95, Dlg, ZO-1) domain protein, α-syntrophin, as an ARMS-interacting protein in muscle. Overexpression of α-syntrophin induced ARMS clustering in a PDZ domain–dependent manner. Coexpression of ARMS enhanced EphA4 signaling, which was further augmented by the presence of α-syntrophin. Moreover, the ephrin-A1–induced tyrosine phosphorylation of EphA4 was reduced in C2C12 myotubes after the blockade of ARMS and α-syntrophin expression by RNA interference. Finally, α-syntrophin–null mice exhibited a disrupted localization of ARMS and EphA4 at the NMJ and a reduced expression of ARMS in muscle. Altogether, our findings suggest that ARMS may play an important role in regulating postsynaptic signal transduction through the syntrophin-mediated localization of receptor tyrosine kinases such as EphA4.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Syntrophin"

1

Xu, Weiguang. "Solution structure of [Alpha]-syntrophin PH-PDZ tandem domain /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?BICH%202005%20XU.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hogan, Angela. "Syntrophin regulates the subcellular localization of diacylglycerol kinase-zeta." Thesis, University of Ottawa (Canada), 2003. http://hdl.handle.net/10393/26490.

Full text
Abstract:
Syntrophins are scaffolding proteins that link signaling molecules to the dystrophin protein complex at the plasma membrane. To further understand the roles of syntrophins a yeast two-hybrid screen of a human brain cDNA library was done using the PDZ domain of the recently identified brain-specific gamma 1-syntrophin, an isoform for which no signaling ligands had yet been identified. This screen yielded ten overlapping clones coding for the C-terminal portion of diacylglycerol kinase-zeta (DGK-zeta), a kinase that phosphorylates the membrane lipid diacylglycerol (DAG) to phosphatidic acid (PA). Biochemical experiments and binding assays confirmed that this kinase's C-terminus, containing the consensus PDZ-binding motif Q-E-T-A-V-COOH, was both necessary and sufficient for the interaction. This complex can be immunoprecipitated from co-transfected Hela cells, and the C-terminal-PDZ interaction appears to be required for the distribution of this complex between both the cytosol and nucleus. In the brain, DGK-zeta and gamma1-syntrophin colocalize in cerebellar Purkinje fibres and pyramidal neurons of the hippocampus and cortex, areas where dystrophin is expressed, and DGK-zeta can be detected in dystrophin immunoprecipitates from mouse brain extracts. Furthermore, biochemical experiments also show that DGK-zeta binds to the PDZ domain of alpha- and beta-syntrophins, and, endogenous syntrophin can be detected in DGK-zeta immunoprecipitates from cultured C2C12 skeletal muscle cell extracts. In normal skeletal muscle, DGK-zeta and syntrophin co-localizes at the NMJ, and the sarcolemma of oxidative fibres. In mdx mouse skeletal muscle, DGK-zeta's localization at the NMJ appears unaffected, while sarcolemmal levels are decreased in degenerating fibres but not in regenerating or regenerated ones. Together, our data suggest that syntrophin binds to DGK-zeta and links it to dystrophin-associated protein complexes in neurons and muscle cells, thereby playing a role in regulating the subcellular localization and function of this lipid kinase.
APA, Harvard, Vancouver, ISO, and other styles
3

INOUE, MASAHIKO, YOSHIHIRO WAKAYAMA, TAKAHIRO JIMI, SEIJI SHIBUYA, HAJIME HARA, AKIHIKO UNAKI, and KIYOKAZU KENMOCHI. "SKELETAL MUSCLE SYNTROPHIN INTERACTORS REVEALED BY YEAST TWO-HYBRID ASSAY." Nagoya University School of Medicine, 2008. http://hdl.handle.net/2237/10550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schubert, Sandra. "The Role of [beta]2-Syntrophin Phosphorylation in Secretory Granule Exocytosis." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2006. http://nbn-resolving.de/urn:nbn:de:swb:14-1146851994562-42414.

Full text
Abstract:
The trafficking of insulin secretory granules(SGs) of pancreatic b-cells is a tightly controlled complex network. Increasing evidence indicates that the cortical actin cytoskeleton modulates the mobility and exocytosis of SGs,yet the mechanisms anchoring SGs to the cytoskeleton is not completely understood.It has been shown by Ort et al.(2000,2001) that the cytoplasmic tail of an intrinsic membrane protein of the SGs named ICA512/IA-2 binds the PDZ domain of b2-syntrophin,which in turn binds to the F-actin-binding protein utrophin. These data also indicate that stimulation of SG exocytosis affects the phosphorylation of b2-syntrophin,hence altering its binding to ICA512.Therefore a model was proposed whereby SGs are anchored to the actin cytoskeleton through the ICA512/b2-syntrophin complex, whose dynamics are regulated by phosphorylation.To test this model GFP-b2-syntrophin stable INS-1 cell clones were generated.GFP-b2-syntrophin expression and localization pattern were similar to those of the endogenous protein. Electron microscopy showed that in GFP-b2-syntrophin INS-1 cells the number of SGs with a pear-like shape was increased relative to control cells. Insulin content and stimulated secretion were increased in three GFP-â2-syntrophin INS-1 cell clones,compared to non-transfected INS-1 cells and INS-1 cells expressing GFP. These increments correlated with the different expression levels of GFP-b2-syntrophin in the three GFP-b2-syntrophin INS-1 cell clones. These findings support the hypothesis that b2-syntrophin regulates the trafficking and exocytosis of SGs by modulating their tethering to the actin cytoskeleton.In order to confirm the proposed model, the phosphorylation of b2-syntrophin was investigated in more detail. Similar to endogenous b2-syntrophin,GFP-b2-syntrophin underwent Ca2+-dependent and okadaic acid-sensitive dephosphorylation upon stimulation of insulin secretion. Stimulation-dependent dephosphorylation was confirmed by immunoprecipitation of 32P-labeled GFP-b2-syntrophin.Mass spectrometry of immunoprecipitated GFP-b2-syntrophin allowed the identification of four serine-phosphorylation sites (S75,S90,S213,S373) that could affect the binding to ICA512.Mutants,in which all four phosphoserines, were replaced by either asp or ala to mimic(S/D) or prevent(S/A) phosphorylation were expressed in INS-1 cells. All S/D mutants retained a cortical localization,but by immunoblotting the pattern of the S75D allele differed from wild type and all other S/D alleles.Conversely, all S/A alleles were diffused cytosolically, except S213A,which was still restricted to the cortex. Finally, pull down assays showed increased binding of ICA512 to the S75A and S90D alleles compared to wild type b2-syntrophin,while the opposite was observed with the S75D and S90A mutants.Additionally,both the S75 and the S213 allele conform a consensus for phosphorylation by Cdk5,which is known to modulate insulin secretion. The phosphorylation of GFP-b2-syntrophin and particularly the S75 allele by Cdk5 was exhibited with pharmacological inhibitors,by in vitro phosphorylation and by RNAi. Taken together, these findings are consistent with the model by which phosphorylation of b2-syntrophin modulates the tethering of SGs to the cytoskeleton, and thereby their mobility and exocytosis. Specifically, the data of this thesis suggest that Cdk5-dependent phosphorylation of the S75 site of GFP-b2-syntrophin facilitates insulin secretion by reducing the interaction of b2-syntrophin with ICA512,thereby decreasing the actin cytoskeleton constrain on SG mobility. This process could occur in combination with the phosphatase-dependent dephosphorylation of b2-syntrophin at phosphosites other than S75
Der Transport Insulin-gefüllter sekretorische Granula(SG) ist ein streng kontrollierter komplexer Prozess.Es gibt vermehrt Beweise,dass das kortikale Actinzytoskelett die Ausschüttung der SGs beeinflusst.Bisher ist der Mechanismus der Verankerung von SGs am Zytoskelett noch nicht vollständig aufgeklärt.Ort et al.(2000,2001) haben gezeigt,daß der zytosoplasmatische Teil des trans-membranen SG-Proteins ICA512 mit der PDZ-Domäne von b2-Syntrophin interagiert.Dieses Protein bindet das F-Actin-Bindeprotein Utrophin.Die Ergebnisse zeigen außerdem,daß durch Stimulation der SG-Exozytose der Phosphorilierungsstatus von b2-Syntrophin beeinflusst wird,woraus ein verändertes Bindungsvermögen zu ICA512 resultiert.Es wurde ein Funktionsmodel vorgestellt,in dem sich SGs durch die Interaktion des ICA512/b2-Syntrophin Komplexes an das Actinzytoskelett binden.Dabei wird die Bindedynamik durch Phosphorilierung reguliert.Um dieses Model zu etablieren,wurden stabile GFP-b2-Syntrophin produzierende INS-1-Zellklone erzeugt.Die zelluläre Lokalisation und das Expressionsmuster von GFP-b2-Syntrophin stimmen mit dem des endogenen Proteins überein.Elektronenmikroskopie zeigte eine größe Anzahl oval-verformter SGs in GFP-b2-Syntrophin INS-1-Zellen im Vergleich zu Kontrollzellen.Verglichen mit nicht-transfizierten INS-1 Zellen waren in drei GFP-b2-Syntrophin INS-1-Zellklonen der Insulingehalt der Zellen und die stimulierte Insulinsekretion erhöht.Die Werte korrelierten mit den unterschiedlichen GFP-b2-Syntrophin Expressionsmengen der Klone.Diese Ergebnisse untermauern die Hypothese,daß b2-Syntrophin den Transport und die Sekretion der SGs durch Modulation ihres Bindevermögens an Actin reguliert.Um das postulierte Model genauer zu prüfen,wurde die Phosphorilierung von b2-Syntrophin detaillierter untersucht.Das GFP-Protein wurde,ähnlich dem endogenen b2-Syntrophin,durch Stimulation der Insulinausschüttung dephosphoriliert.Diese Dephosphorilierung ist Ca2+-abhängig und Okadeinsäuresensitiv.Die stimulationsabhängige Dephosphorilierung wurde durch Immunoprezipitation von 32P-markiertem GFP-b2-Syntrophin bestätigt.Massenspektrometrie des präzipitierten Proteins ermöglichte die Identifikation von vier Serin-Phosphorilierungsstellen(S75,S90,S213,S373),welche die Bindung zu ICA512 beeinflussen könnten.Mutanten,in denen die vier Phosphoserine durch Asp beziehungsweise Ala ersetzt wurden,um entweder eine Phosphorilierung(S/D) oder Dephosphorilierung(S/A) nachzuahmen,wurden in INS-1-Zellen exprimiert.Alle S/D Mutanten blieben kortikal lokalisiert.Das Expressionsmuster des S75D Allels unterschied sich jedoch von denen des Wild-Typs(wt).Im Gegensatz dazu waren alle S/A Allele zytosolisch verteilt.Eine Ausnahme bildete S213A,das an der Zellkortex lokalisiert blieb.Im Vergleich zu wt b2-Syntrophin zeigten PullDown-Assays eine erhöhte Bindung von ICA512 zu den S75A und S90D Allelen.Das Gegenteil konnte für die S75D und S90A Mutanten nachgewiesen werden.S75,S90 und S213 sind in einer Konsensussequenz für Cdk5-Phosphorilierung enthalten.Diese Kinase kann die Insulinsekretion regulieren.Die Phosphorilierung von b2-Syntrophin,insbesondere des S75 Allels durch Cdk5 wurde durch pharmakologische Inhibitoren,in vitro-Phosphorilierung und RNAi demonstriert.Zusammenfassend stimmen diese Erkenntnisse mit dem Model überein,daß die Phosphorilierung von b2-Syntrophin die Vernetzung von SGs mit Actin und dadurch deren Mobilität und Exozytose moduliert.Im Speziellen postulieren die Ergebnisse dieser Arbeit eine Cdk5-abhängige Phosphorilierung der S75 Stelle des b2-Syntrophins.Durch eine verminderte Interaktion von b2-Syntrophin und ICA512 erleichtert diese Mutante vermutlich die Insulinsekretion,da der Einfluss des Actinzytoskeletts auf die Granulamobilität vermindert ist.Dieser Prozess ereignet sich möglicherweise in Kombination mit einer Dephosphorilierung des b2-Syntrophins.in Kombination mit einer Dephosphorilierung des b2-Syntrophins
APA, Harvard, Vancouver, ISO, and other styles
5

Isserlin, Benjamin Alkan. "Syntrophin expression and interacting protein partners in the central nervous system." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0016/MQ54121.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schubert, Sandra. "The Role of [beta]2-Syntrophin Phosphorylation in Secretory Granule Exocytosis." Doctoral thesis, Technische Universität Dresden, 2005. https://tud.qucosa.de/id/qucosa%3A23710.

Full text
Abstract:
The trafficking of insulin secretory granules(SGs) of pancreatic b-cells is a tightly controlled complex network. Increasing evidence indicates that the cortical actin cytoskeleton modulates the mobility and exocytosis of SGs,yet the mechanisms anchoring SGs to the cytoskeleton is not completely understood.It has been shown by Ort et al.(2000,2001) that the cytoplasmic tail of an intrinsic membrane protein of the SGs named ICA512/IA-2 binds the PDZ domain of b2-syntrophin,which in turn binds to the F-actin-binding protein utrophin. These data also indicate that stimulation of SG exocytosis affects the phosphorylation of b2-syntrophin,hence altering its binding to ICA512.Therefore a model was proposed whereby SGs are anchored to the actin cytoskeleton through the ICA512/b2-syntrophin complex, whose dynamics are regulated by phosphorylation.To test this model GFP-b2-syntrophin stable INS-1 cell clones were generated.GFP-b2-syntrophin expression and localization pattern were similar to those of the endogenous protein. Electron microscopy showed that in GFP-b2-syntrophin INS-1 cells the number of SGs with a pear-like shape was increased relative to control cells. Insulin content and stimulated secretion were increased in three GFP-â2-syntrophin INS-1 cell clones,compared to non-transfected INS-1 cells and INS-1 cells expressing GFP. These increments correlated with the different expression levels of GFP-b2-syntrophin in the three GFP-b2-syntrophin INS-1 cell clones. These findings support the hypothesis that b2-syntrophin regulates the trafficking and exocytosis of SGs by modulating their tethering to the actin cytoskeleton.In order to confirm the proposed model, the phosphorylation of b2-syntrophin was investigated in more detail. Similar to endogenous b2-syntrophin,GFP-b2-syntrophin underwent Ca2+-dependent and okadaic acid-sensitive dephosphorylation upon stimulation of insulin secretion. Stimulation-dependent dephosphorylation was confirmed by immunoprecipitation of 32P-labeled GFP-b2-syntrophin.Mass spectrometry of immunoprecipitated GFP-b2-syntrophin allowed the identification of four serine-phosphorylation sites (S75,S90,S213,S373) that could affect the binding to ICA512.Mutants,in which all four phosphoserines, were replaced by either asp or ala to mimic(S/D) or prevent(S/A) phosphorylation were expressed in INS-1 cells. All S/D mutants retained a cortical localization,but by immunoblotting the pattern of the S75D allele differed from wild type and all other S/D alleles.Conversely, all S/A alleles were diffused cytosolically, except S213A,which was still restricted to the cortex. Finally, pull down assays showed increased binding of ICA512 to the S75A and S90D alleles compared to wild type b2-syntrophin,while the opposite was observed with the S75D and S90A mutants.Additionally,both the S75 and the S213 allele conform a consensus for phosphorylation by Cdk5,which is known to modulate insulin secretion. The phosphorylation of GFP-b2-syntrophin and particularly the S75 allele by Cdk5 was exhibited with pharmacological inhibitors,by in vitro phosphorylation and by RNAi. Taken together, these findings are consistent with the model by which phosphorylation of b2-syntrophin modulates the tethering of SGs to the cytoskeleton, and thereby their mobility and exocytosis. Specifically, the data of this thesis suggest that Cdk5-dependent phosphorylation of the S75 site of GFP-b2-syntrophin facilitates insulin secretion by reducing the interaction of b2-syntrophin with ICA512,thereby decreasing the actin cytoskeleton constrain on SG mobility. This process could occur in combination with the phosphatase-dependent dephosphorylation of b2-syntrophin at phosphosites other than S75.
Der Transport Insulin-gefüllter sekretorische Granula(SG) ist ein streng kontrollierter komplexer Prozess.Es gibt vermehrt Beweise,dass das kortikale Actinzytoskelett die Ausschüttung der SGs beeinflusst.Bisher ist der Mechanismus der Verankerung von SGs am Zytoskelett noch nicht vollständig aufgeklärt.Ort et al.(2000,2001) haben gezeigt,daß der zytosoplasmatische Teil des trans-membranen SG-Proteins ICA512 mit der PDZ-Domäne von b2-Syntrophin interagiert.Dieses Protein bindet das F-Actin-Bindeprotein Utrophin.Die Ergebnisse zeigen außerdem,daß durch Stimulation der SG-Exozytose der Phosphorilierungsstatus von b2-Syntrophin beeinflusst wird,woraus ein verändertes Bindungsvermögen zu ICA512 resultiert.Es wurde ein Funktionsmodel vorgestellt,in dem sich SGs durch die Interaktion des ICA512/b2-Syntrophin Komplexes an das Actinzytoskelett binden.Dabei wird die Bindedynamik durch Phosphorilierung reguliert.Um dieses Model zu etablieren,wurden stabile GFP-b2-Syntrophin produzierende INS-1-Zellklone erzeugt.Die zelluläre Lokalisation und das Expressionsmuster von GFP-b2-Syntrophin stimmen mit dem des endogenen Proteins überein.Elektronenmikroskopie zeigte eine größe Anzahl oval-verformter SGs in GFP-b2-Syntrophin INS-1-Zellen im Vergleich zu Kontrollzellen.Verglichen mit nicht-transfizierten INS-1 Zellen waren in drei GFP-b2-Syntrophin INS-1-Zellklonen der Insulingehalt der Zellen und die stimulierte Insulinsekretion erhöht.Die Werte korrelierten mit den unterschiedlichen GFP-b2-Syntrophin Expressionsmengen der Klone.Diese Ergebnisse untermauern die Hypothese,daß b2-Syntrophin den Transport und die Sekretion der SGs durch Modulation ihres Bindevermögens an Actin reguliert.Um das postulierte Model genauer zu prüfen,wurde die Phosphorilierung von b2-Syntrophin detaillierter untersucht.Das GFP-Protein wurde,ähnlich dem endogenen b2-Syntrophin,durch Stimulation der Insulinausschüttung dephosphoriliert.Diese Dephosphorilierung ist Ca2+-abhängig und Okadeinsäuresensitiv.Die stimulationsabhängige Dephosphorilierung wurde durch Immunoprezipitation von 32P-markiertem GFP-b2-Syntrophin bestätigt.Massenspektrometrie des präzipitierten Proteins ermöglichte die Identifikation von vier Serin-Phosphorilierungsstellen(S75,S90,S213,S373),welche die Bindung zu ICA512 beeinflussen könnten.Mutanten,in denen die vier Phosphoserine durch Asp beziehungsweise Ala ersetzt wurden,um entweder eine Phosphorilierung(S/D) oder Dephosphorilierung(S/A) nachzuahmen,wurden in INS-1-Zellen exprimiert.Alle S/D Mutanten blieben kortikal lokalisiert.Das Expressionsmuster des S75D Allels unterschied sich jedoch von denen des Wild-Typs(wt).Im Gegensatz dazu waren alle S/A Allele zytosolisch verteilt.Eine Ausnahme bildete S213A,das an der Zellkortex lokalisiert blieb.Im Vergleich zu wt b2-Syntrophin zeigten PullDown-Assays eine erhöhte Bindung von ICA512 zu den S75A und S90D Allelen.Das Gegenteil konnte für die S75D und S90A Mutanten nachgewiesen werden.S75,S90 und S213 sind in einer Konsensussequenz für Cdk5-Phosphorilierung enthalten.Diese Kinase kann die Insulinsekretion regulieren.Die Phosphorilierung von b2-Syntrophin,insbesondere des S75 Allels durch Cdk5 wurde durch pharmakologische Inhibitoren,in vitro-Phosphorilierung und RNAi demonstriert.Zusammenfassend stimmen diese Erkenntnisse mit dem Model überein,daß die Phosphorilierung von b2-Syntrophin die Vernetzung von SGs mit Actin und dadurch deren Mobilität und Exozytose moduliert.Im Speziellen postulieren die Ergebnisse dieser Arbeit eine Cdk5-abhängige Phosphorilierung der S75 Stelle des b2-Syntrophins.Durch eine verminderte Interaktion von b2-Syntrophin und ICA512 erleichtert diese Mutante vermutlich die Insulinsekretion,da der Einfluss des Actinzytoskeletts auf die Granulamobilität vermindert ist.Dieser Prozess ereignet sich möglicherweise in Kombination mit einer Dephosphorilierung des b2-Syntrophins.in Kombination mit einer Dephosphorilierung des b2-Syntrophins.
APA, Harvard, Vancouver, ISO, and other styles
7

Bauer, Sabrina [Verfasser], and Christa [Akademischer Betreuer] Büchler. "Untersuchungen zur Rolle von beta2-Syntrophin in Adipozyten / Sabrina Bauer. Betreuer: Christa Büchler." Regensburg : Universitätsbibliothek Regensburg, 2012. http://d-nb.info/1035300753/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Eisinger, Kristina [Verfasser], and Christa [Akademischer Betreuer] Büchler. "Untersuchungen zur Rolle von alpha-Syntrophin in Adipozyten / Kristina Eisinger. Betreuer: Christa Büchler." Regensburg : Universitätsbibliothek Regensburg, 2014. http://d-nb.info/1077095953/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Harisseh, Rania. "Rôle des entrées capacitives et de TRPV2 dans la dérégulation de l'homéostasie calcique dans le muscle squelettique humain : implication dans la dystrophie musculaire de Duchenne." Thesis, Poitiers, 2012. http://www.theses.fr/2012POIT2258/document.

Full text
Abstract:
La dystrophie musculaire de Duchenne (DMD) est la conséquence de la perte de la dystrophine, une protéine cytosquelettique indispensable au maintien mécanique et fonctionnel du sarcolemme. Notre équipe a largement étudié les entrées cationiques dans les lignées murines et a montré : 1- une augmentation anormale des influx dépendant des stocks calciques (SOCE) dans les myotubes (MT) déficients en dystrophine (dys-), 2- que les influx SOCE sont médiés par les canaux TRPC1 et TRPC4, 3- que la dérégulation des SOCE dans les MT dys- est corrigée grâce à la surexpression de l'α1-syntrophine. Au jour d'aujourd’hui, il existe peu d'éléments dans la littérature quant à la caractérisation des entrées SOCEs dans les cellules musculaires humaines et dans la DMD. Ce travail de thèse s'articule autour de deux parties : Le modèle murin, dans lequel nous avons montré un rôle indispensable de STIM1 et Orai1 dans la mise en place des entrées SOCEs et l'implication de la voie Ca2+/PLC/PKC dans l'augmentation anormale de ces entrées dans les MT murins dys-. Le modèle humain primaire, dans lequel nous avons mis en évidence : 1- une augmentation anormale des influx SOCEs dans les MT DMD et établit le profil d'expression des différentes protéines nécessaires à la mise en place de ces entrées ; 2- l'implication de la voie Ca2+/PLC/PKC dans la dérégulation des SOCEs dans les MT humains DMD et le rôle de l'α1-syntrophine dans la régulation de ces entrées dans les MT humains ; 3- la dérégulation de l'homéostasie calcique dans la DMD qui se produit par l'intermédiaire des entrées cationiques dépendantes de TRPV2 dans les cellules musculaires dystrophiques
Duchenne muscular dystrophy (DMD) is the consequence of the loss of dystrophin, a cytoskeletal protein essential for the mechanical and functional maintenance of the sarcolemma. Our group has extensively studied store-operated cation influx (SOCE) in mouse cell lines and highlighted: 1- an abnormal increase in SOCE in dystrophin-deficient (dys-) mouse myotubes (MT), 2- That SOCE are mediated by TRPC1 and TRPC4, 3- that SOCE deregulation in dys- MT is corrected by overexpression of α1-syntrophin. As of today, there is little evidence in the literature regarding the characterization of SOCE in human muscle cells and in human DMD. This thesis work is divided in two parts : In the murine model, we demonstrated an essential role of STIM1 and Orai1 in the establishment of SOCE and highlighted the involvement of Ca2+/PLC/PKC pathway in the abnormal increase of cation entry in dystrophin-deficient mouse myotubes.In primary human model, we showed: 1- an abnormal increase of SOCE in DMD MT and established the expression profile of various proteins necessary for the implementation of this influx; 2- the involvement of Ca2+/PLC/PKC in SOCE deregulation in human DMD MT and the role of α1-syntrophin in the regulation of cation entry in human MT; 3- the deregulation of calcium homeostasis in DMD that occurs through TRPV2. This work proposes a new regulatory pathway, Ca2+/PLC/PKC, for SOCE in skeletal muscle cells and provides the first elements of the disruption of calcium homeostasis in DMD human myotubes due to the absence of SOCE's regulation by the α1-syntrophin and to the overactivation of TRPV2 channels
APA, Harvard, Vancouver, ISO, and other styles
10

Hebel, Tobias [Verfasser], and Christa [Akademischer Betreuer] Büchler. "Bedeutung der Syntrophin-Isoformen alpha und beta2 für den hepatischen Lipidstoffwechsel / Tobias Hebel. Betreuer: Christa Büchler." Regensburg : Universitätsbibliothek Regensburg, 2016. http://d-nb.info/1101939877/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Syntrophin"

1

Isserlin, Benjamin Alkan. Syntrophin expression and interacting protein partners in the central nervous system. Ottawa: National Library of Canada, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Frank, Wagner, and Neue Gesellschaft für Bildende Kunst. Realismusstudio, eds. Syntropia. Berlin: Neue Gesellschaft für Bildende Kunst, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Papagathangelou, Papastauros. Syntrophia me tous Hagious. Leukōsia: Ekdosē "Hidryma P. Papagathangelou", 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Epameinōnda, Charalampos. Syntrophia me tē giagia. Paphos, Kypros: Kosmēma, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Trypheros syntrophos: Mythistoria. Athēna: Ekdoseis Agra, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gia mia syntrophia anamesa mas. Athēna: Kedros, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schink, Bernhard. Energetics of syntrophic cooperation in methanogenic degardation. Washington: American Society for Microbiology, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kakoullēs, Loukas. Megala horamata kai syntrophika machairōmata. Leukōsia: Loukas Kakoullēs, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mikis, Theodorakis. Zēteitai Aristera: Syntrophoi, as xypnēsoume--. [Athens]: I. Siderēs, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bambalēs, Giōrgos. Diogenēs ho Kynikos kai syntrophia: Rēseis kai antirrēseis. Athēna: Epikouros, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Syntrophin"

1

Mushtaq, Umar, and Firdous A. Khanday. "Syntrophin." In Encyclopedia of Signaling Molecules, 1–7. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4614-6438-9_102007-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Saleem, Sehar, and Firdous A. Khanday. "Alpha-1-Syntrophin." In Encyclopedia of Signaling Molecules, 285–89. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_101491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mushtaq, Umar, and Firdous A. Khanday. "Gamma-1-Syntrophin." In Encyclopedia of Signaling Molecules, 2003–7. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_101492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Saleem, Sehar, and Firdous A. Khanday. "Alpha-1-Syntrophin." In Encyclopedia of Signaling Molecules, 1–5. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4614-6438-9_101491-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mushtaq, Umar, and Firdous A. Khanday. "Gamma-1-Syntrophin." In Encyclopedia of Signaling Molecules, 1–5. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4614-6438-9_101492-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mushtaq, Umar, and Firdous A. Khanday. "Gamma-1-Syntrophin." In Encyclopedia of Signaling Molecules, 1–5. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4614-6438-9_101492-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sieber, Jessica R., Michael J. McInerney, Nicolai Müller, Bernhard Schink, Rob P. Gunsalus, and Caroline M. Plugge. "Methanogens: Syntrophic Metabolism." In Biogenesis of Hydrocarbons, 1–31. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-53114-4_2-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Houwen, F. P., J. Plokker, C. Dijkema, and A. J. M. Stams. "Syntrophic Propionate Oxidation." In Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer, 281–89. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0613-9_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sieber, Jessica R., Michael J. McInerney, Nicolai Müller, Bernhard Schink, Robert P. Gunsalus, and Caroline M. Plugge. "Methanogens: Syntrophic Metabolism." In Biogenesis of Hydrocarbons, 179–209. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-78108-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sieber, J. R., M. J. McInerney, C. M. Plugge, B. Schink, and R. P. Gunsalus. "Methanogenesis: Syntrophic Metabolism." In Handbook of Hydrocarbon and Lipid Microbiology, 337–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-77587-4_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Syntrophin"

1

Nikolić, Predrag K., Hua Yang, Jyunjye Chen, and George Peter Stankevich. "Syntropic counterpoints." In SIGGRAPH '18: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3230744.3230749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Wen-Tso. "Role of Microbial Syntrophy in Bioenergy Production." In 14th Asia Pacific Confederation of Chemical Engineering Congress. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-1445-1_071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Larter, Steve, B. Bennett, and I. Gates. "From Syntropic Bacteria to Beyond SAGD! The Origin & Impact of Oil Viscosity Variations in Heavy Oil Reservoirs & Routes to Low Carbon Emissions Energy Recovery." In Second EAGE Workshop on Tar Mats and Heavy Oil - Nuisance or Resources? European Association of Geoscientists & Engineers, 2010. http://dx.doi.org/10.3997/2214-4609.20144626.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Syntrophin"

1

Meyer, Birte, and David Stahl. Syntrophic Degradation of Lactate in Methanogenic Co-cultures. Office of Scientific and Technical Information (OSTI), May 2010. http://dx.doi.org/10.2172/986317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Warikoo, V., M. J. McInerney, and J. M. Suflita. Interspecies acetate transfer influences the extent of anaerobic benzoate degradation by syntrophic consortia. Office of Scientific and Technical Information (OSTI), March 1997. http://dx.doi.org/10.2172/451224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Marx, Christopher J. Final Report for Award #0006731. Modeling, Patterning and Evolving Syntrophic Communities that Link Fermentation to Metal Reduction. Office of Scientific and Technical Information (OSTI), July 2015. http://dx.doi.org/10.2172/1194727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Orphan, Victoria. Integrative molecular and microanalytical studies of syntrophic partnerships linking C, S, and N cycles in anoxic environments. Office of Scientific and Technical Information (OSTI), July 2016. http://dx.doi.org/10.2172/1275739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Orphan, Victoria Jeanne. Syntrophic interactions and mechanisms underpinning anaerobic methane oxidation: targeted metaproteogenomics, single-cell protein detection and quantitative isotope imaging of microbial consortia. Office of Scientific and Technical Information (OSTI), November 2014. http://dx.doi.org/10.2172/1164471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography