To see the other types of publications on this topic, follow the link: System of production.

Journal articles on the topic 'System of production'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'System of production.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Rajendrakumar, Shiny, V. K. Parvati, and Anandhalakshmy Ram. "Automation of Production Management System." Bonfring International Journal of Software Engineering and Soft Computing 6, special issue (October 31, 2016): 234–38. http://dx.doi.org/10.9756/bijsesc.8285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ciolkosz, D. "Torrefied biomass in biofuel production system." Scientific Horizons 93, no. 8 (2020): 9–12. http://dx.doi.org/10.33249/2663-2144-2020-93-8-9-12.

Full text
Abstract:
Ukraine produces large amounts of crop residues every year, much which could be utilized to produce biofuel. However, efficient supply chains and system configurations are needed to make such systems efficient and cost effective. One option is to integrate torrefaction, power production and biofuel production into a single, coordinated system. This approach allows for high value product (i.e. biofuel), greater utilization of the energy content of the feedstock, and supply chain efficiency. Initial analyses indicate that revenues can be enhanced through this approach, and further analyses and optimization efforts could identify a sustainable approach to renewable fuel and power production for Ukraine. The question of scale and layout remains of interest as well, and a thorough logistical study is needed to identify the most suitable configuration. Agricultural operations often benefit from smaller scales of operation, whereas fuel production processes tend to operate profitably only at very large scale. Thus, a balance must be struck between the needs of both ends of the supply chain. The processing center concept helps to balance those needs. A system such as this also has potential to synergize with other agricultural production systems, such as the production of animal feed, fertilizer, and other bio-based products. The complexities of the Ukrainian agricultural market will need to be reflected carefully in any model that seeks to assess the system's potential. Presents a concept for coupling thermal pretreatment (torrefaction with biofuel and power production for the transformation of wheat straw into a value added product for Ukraine. Torrefaction provides supply chain savings, while conversion provides added value to the product. This paradigm has potential to utilize a widely produced waste material into a valuable source of energy and possibly other products for the country.
APA, Harvard, Vancouver, ISO, and other styles
3

Piątek, Radosław. "World Class Manufacturing, Toyota Manufacturing System: production system comparison in sustainability context." Nowoczesne Systemy Zarządzania 17, no. 4 (December 16, 2022): 91–110. http://dx.doi.org/10.37055/nsz/158800.

Full text
Abstract:
Systemy produkcyjne stanowią jeden z głównych filarów przedsiębiorstw. Ich wydajność i zasady funkcjonowania determinują finalną jakość produktów, których odbiorcami są instytucje oraz konsumenci końcowi. Jednak współcześnie oprócz wcześniej wymienionych zagadnień pojawiły się nowe wymagania związane z koncepcją zrównoważonego rozwoju. Metody produkcji, wpływ na środowisko naturalne czy poszanowanie ludzi stały się równie istotnymi aspektami jak trwałość lub cena produktu. Celem niniejsze-go artykułu jest przedstawienie porównania dwóch systemów produkcyjnych, które cieszą się dużą popularnością, zwłaszcza w przemyśle motoryzacyjnym, tj. Toyota Production System (TPS – System Produk-cyjny Toyoty) oraz World Class Manufacturing (WCM – Produkcja Klasy Światowej), w kontekście zrównoważonego rozwoju. W tym celu zrealizowano analizę porównawczą opartą na czterech kategoriach: skomplikowanie systemu, popularność, uniwersalność oraz powiązania ze zrównoważonym rozwojem. Zgromadzony materiał ma zróżnicowany charakter, co pozwala na głębokie spektrum badania i porównania obu rozwiązań. W wyniku przeprowadzonej analizy można zauważyć różnice w poziomie komplikacji obu rozwiązań produkcyjnych. System Produkcyjny Toyoty ma prostszą strukturę w porównaniu do Produkcji Klasy Światowej. Modelowe przedstawienie systemu TPS ukazuje wszystkie główne elementy wraz z ich najważniejszymi cechami i zastosowaniem. WCM jest systemem o bardziej skomplikowanej budo-wie, precyzującym większą liczbę czynników koniecznych do wdrożenia i utrzymania. W przypadku popularności obu rozwiązań przeprowadzone badanie ukazało, że częściej wyszukiwaną frazą jest Toyota Production System, ale większą liczbą publikacji i materiałów może się pochwalić World Class Manufacturing. Oba systemy są wysoce uniwersalnymi rozwiązaniami produkcyjnymi. Analizowane studia przypadków ukazują implementacje zakończone sukcesem w przedsiębiorstwach produkcyjnych i usługowych w branżach niezwiązanych z przemysłem motoryzacyjnym. Odnosząc się do zgodności z wyznacznikami zrównoważonego rozwoju, można stwierdzić, że oba systemy posiadają elementy odpowiedzialne za realizację wymienionych postanowień, ale realizują je w różny sposób. TPS nie wiąże się bezpośrednio z koncepcją zrównoważonego rozwoju, ale sam system ma w sobie zagadnienia skupione wokół redukcji strat, oszczędności, produkcji jedynie potrzebnych w danej chwili komponentów czy szacunku dla ludzi. WCM zaś ma specjalny element odpowiadający za realizację wymagań normy ISO 14000, która dotyczy zarządzania wpływem na środowisko naturalne. Finalnie można przyjąć, że oba systemy przejawiają wiele cech wspólnych, np. w przypadku założeń funkcjonowania jednak realizacja w każdym z nich ma inny charakter. TPS jest systemem prostszym, pozwalającym się łatwo dostosować do specyfiki organizacji. WCM jest systemem bardziej skomplikowanym, o dużym stopniu sformalizowania. Wykonana analiza ma charakter przeglądowy, ukazując możliwie szerokie spektrum obu systemów produkcyjnych. Istnieje możliwość dalszego realizowania badań dzięki poddawaniu bardziej szczegółowym analizom każdego z aspektów systemów lub zestawienia ich z innymi rozwiązaniami produkcyjnymi.
APA, Harvard, Vancouver, ISO, and other styles
4

Aoyama, Masayuki. "Production System." Journal of The Japan Institute of Electronics Packaging 17, no. 3 (2014): P3. http://dx.doi.org/10.5104/jiep.17.p3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tummala, Suguna. "Aquaponics Systems: Future Food Production System." International Journal of Current Microbiology and Applied Sciences 10, no. 11 (November 10, 2021): 397–406. http://dx.doi.org/10.20546/ijcmas.2021.1011.045.

Full text
Abstract:
Aquaculture being the important source of global animal protein, is the potential food production sector. The ever increasing population worldwide, urbanization, human activities, environmental degradation, social and economic problems drive the need for new, innovative and improved solutions for food production. One pioneering approach that promises to address these problems is Aquaponics. Aquaponics is the integration of recirculatory aquaculture system and hydroponics in one production system. An aquaponic system is established at Fisheries Research Station, Sri Venkateswara Veterinary University, Undi, Bhimavaram, West Godavari district, Andhra Pradesh, India. The future purpose of our study is finding an optimized solution for the Aquaponics systems to produce qualitative (organic) and quantitative food with low production cost, conservation of water efficiently and eco-friendly. This study has covered the designs, theoretical and practical concepts of Aquaponics, ideal conditions, management strategies, compatible aquacultural and horticultural varieties and concept of balancing the unit. This publication will be a supplemental hand out for outreach, extension, education and further research.
APA, Harvard, Vancouver, ISO, and other styles
6

Tashakori, Laleh, and Abouzar Arabsorkhi. "A Survey on Marketing Characteristics and Production System Strategies-Case Study: Cans Production." International Journal of Engineering Research 4, no. 9 (September 1, 2015): 510–17. http://dx.doi.org/10.17950/ijer/v4s9/908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lee, Jong-Tak, and Hoon-Sung Kwak. "On Production System by One-Person Production System in Broadcasting Program Production." Journal of the Korea Contents Association 7, no. 8 (August 28, 2007): 117–24. http://dx.doi.org/10.5392/jkca.2007.7.8.117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Foith-Förster, Petra, and Thomas Bauernhansl. "Generic Production System Model of Personalized Production." MATEC Web of Conferences 301 (2019): 00019. http://dx.doi.org/10.1051/matecconf/201930100019.

Full text
Abstract:
Manufacturing companies are operating in a turbulent business ecosystem that calls for product variety, product mix flexibility, volume scalability and high efficiency. Personalized production arises as new production paradigm to replace mass personalization. The paper proposes a generic model for the design of production systems for the paradigm of personalized production. The model applies the system design methodology Axiomatic Design and uses the notation of Axiomatic Design Theory for Systems combined with the product precedence graph for product structure modeling. The model represents the static system structure, decomposed into its subsystems, and explains the dynamic behavior of the system during operation, depending on the product’s architecture. It is intended as a reference model for production system planning.
APA, Harvard, Vancouver, ISO, and other styles
9

Lanza, Gisela, Annabel Jondral, and Ulrike Drotleff. "Valuation of increased production system performance by integrated production systems." Production Engineering 6, no. 1 (January 10, 2012): 79–87. http://dx.doi.org/10.1007/s11740-011-0359-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dabre, Dr Mahesh C. "A Study of Role of Production Planning System." Indian Journal of Applied Research 3, no. 5 (October 1, 2011): 89–90. http://dx.doi.org/10.15373/2249555x/may2013/25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kidd, John, and Yashiro Monden. "Toyota Production System." Journal of the Operational Research Society 46, no. 5 (May 1995): 669. http://dx.doi.org/10.2307/2584544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Mabuchi, Yoshio, and Kazuhiko Ohishi. "Production moniter system." IEEJ Transactions on Industry Applications 109, no. 3 (1989): 150–52. http://dx.doi.org/10.1541/ieejias.109.150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Shimamura, Koichi. "Fujitsu Production System." Journal of the Robotics Society of Japan 33, no. 5 (2015): 314–17. http://dx.doi.org/10.7210/jrsj.33.314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Leahy, Daniel. "Music production system." Journal of the Acoustical Society of America 127, no. 2 (2010): 1173. http://dx.doi.org/10.1121/1.3326899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Raman, R. S., R. S. Nutter, and Y. V. Reddy. "A production system for intelligent monitoring systems." IEEE Transactions on Industry Applications 24, no. 5 (1988): 862–65. http://dx.doi.org/10.1109/28.8991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Jonsson, Henric, and Martin Rudberg. "Production System Classification Matrix: Matching Product Standardization and Production-System Design." Journal of Construction Engineering and Management 141, no. 6 (June 2015): 05015004. http://dx.doi.org/10.1061/(asce)co.1943-7862.0000965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

IHARA, Tohru, and Yohei OKUI. "Production design system adapted to production culture." Proceedings of Manufacturing Systems Division Conference 2004 (2004): 47–48. http://dx.doi.org/10.1299/jsmemsd.2004.47.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

GOPALAN, M. N., and U. DINESH KUMAR. "PRODUCTION RATE OF A SPLIT PRODUCTION SYSTEM." International Journal of Reliability, Quality and Safety Engineering 01, no. 03 (September 1994): 353–64. http://dx.doi.org/10.1142/s0218539394000258.

Full text
Abstract:
In this paper, a split production system which has two parallel stations in the second stage is analyzed to evaluate the production rate of the system. A mathematical model is developed using semi-regenerative phenomena and a system of convolution integral equations satisfied by various state probabilities is obtained. An iterative numerical technique is used to solve the system of integral equations obtained.
APA, Harvard, Vancouver, ISO, and other styles
19

Gojkov, Grozdanka, Ranko Rajović, and Aleksandar Stojanović. "NTC learning system and divergent production." Research in Pedagogy 5, no. 2 (2015): 105–26. http://dx.doi.org/10.17810/2015.09.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Yenice, G., O. Kaynar, M. Ileriturk, F. Hira, and A. Hayirli. "Quality of eggs in different production systems." Czech Journal of Food Sciences 34, No. 4 (September 5, 2016): 370–76. http://dx.doi.org/10.17221/33/2016-cjfs.

Full text
Abstract:
This experiment was carried out to compare morphological egg quality parameters, as well as lipid and protein profiles, of brown eggs laid by chickens reared under different production systems: cage, free-range, and family type. A total of 270 brown eggs were obtained from commercial poultry companies raising Lohmann Brown laying hens in a cage system and free-range unit as well as families possessing hens in their yards. The egg lipid and protein contents, as well as lipid and protein profile, varied among the production systems. However, eggs from the free-range system had similar characteristics to those from the cage system. Quality of eggs from the family type system was quite variable. In conclusion, egg quality can be affected by the production system.
APA, Harvard, Vancouver, ISO, and other styles
21

Bybee, Karen. "Dalia Subsea Production System." Journal of Petroleum Technology 59, no. 08 (August 1, 2007): 62–64. http://dx.doi.org/10.2118/0807-0062-jpt.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Carter, Lyle M., Eric A. Rechel, and Burl B. Meek. "ZONE PRODUCTION SYSTEM CONCEPT." Acta Horticulturae, no. 210 (March 1987): 25–34. http://dx.doi.org/10.17660/actahortic.1987.210.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Petrosyan, Artem. "COMPASS Production System Overview." EPJ Web of Conferences 214 (2019): 03039. http://dx.doi.org/10.1051/epjconf/201921403039.

Full text
Abstract:
Migration of COMPASS data processing to Grid environment has started in 2015 from a small prototype, deployed on a single virtual machine. Since summer of 2017, the system works in production mode, distributing jobs to two traditional Grid sites: CERN and JINR. Now the infrastructure of COMPASS Grid Production System includes 6 virtual machines, each is reserved for one production service: database, PanDA, Auto Pilot Factory, Monitoring, CRIC information system and, finally, production system (ProdSys) management instance, which provides a user interface for production manager and hosts services of automatic processing. Support of COMPASS virtual organization is provided by CERN IT. CRIC is also deployed at CERN Cloud Service. Other ProdSys services are deployed at JINR Cloud Service. There are two storage elements at CERN: EOS for short-term storage and Castor for long-term storage. During last year, along with providing a 24/7 service, the system was instrumented by many features, which allow automating data processing as much as possible. Recently, Blue Waters HPC has become a member of the computing infrastructure of the experiment. Details of implementation, workflow management, and infrastructure overview are presented in this article.
APA, Harvard, Vancouver, ISO, and other styles
24

Miyake, Hideki, Rafal Grzymkowski, Radek Ludacka, and Malachi Schram. "Belle II production system." Journal of Physics: Conference Series 664, no. 5 (December 23, 2015): 052028. http://dx.doi.org/10.1088/1742-6596/664/5/052028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Tomassetti, L., F. Bianchi, V. Ciaschini, M. Corvo, D. Del Prete, A. Di Simone, G. Donvito, et al. "SuperB Simulation Production System." Journal of Physics: Conference Series 396, no. 2 (December 13, 2012): 022053. http://dx.doi.org/10.1088/1742-6596/396/2/022053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zimny, Adam. "SOLARIS Production Management System." IFAC Proceedings Volumes 39, no. 22 (September 2006): 102–5. http://dx.doi.org/10.1016/s1474-6670(17)30121-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Đukić, Ankica. "Autonomous hydrogen production system." International Journal of Hydrogen Energy 40, no. 24 (June 2015): 7465–74. http://dx.doi.org/10.1016/j.ijhydene.2015.02.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Nussbaum, Miguel, and Eduardo A. Parra. "A Production Scheduling System." ORSA Journal on Computing 5, no. 2 (May 1993): 168–81. http://dx.doi.org/10.1287/ijoc.5.2.168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lease, Mark, and Mac Lively. "Comparing production system architectures." ACM SIGARCH Computer Architecture News 16, no. 4 (September 1988): 108–16. http://dx.doi.org/10.1145/54331.54339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

O'Brien, E. J., and Torger Hetland. "The Underwater Production System." SPE Production Engineering 6, no. 01 (February 1, 1991): 33–39. http://dx.doi.org/10.2118/19148-pa.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Craig, Iain D. "A Reflective Production System." Kybernetes 23, no. 3 (April 1994): 20–35. http://dx.doi.org/10.1108/03684929410059019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Sjöström, H. "Production adapted safety system." Journal of Occupational Accidents 12, no. 1-3 (June 1990): 149. http://dx.doi.org/10.1016/0376-6349(90)90090-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

SUGITO, Katsuhiko, Tamotsu INOUE, Masumi KAMIJIMA, Shuji TAKEDA, and Toshiyuki YOKOI. "The Protean Production System as a Method for Improving Production System Responsiveness." Proceedings of Manufacturing Systems Division Conference 2004 (2004): 69–70. http://dx.doi.org/10.1299/jsmemsd.2004.69.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ráżewski, P., and O. Zaikin. "Discussion on Community-Build Production System Working Paradigm for Intangible Production System." IFAC Proceedings Volumes 45, no. 6 (May 2012): 634–38. http://dx.doi.org/10.3182/20120523-3-ro-2023.00328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Denno, Peter, Charles Dickerson, and Jennifer Anne Harding. "Dynamic production system identification for smart manufacturing systems." Journal of Manufacturing Systems 48 (July 2018): 192–203. http://dx.doi.org/10.1016/j.jmsy.2018.04.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ulewicz, Sebastian, and Birgit Vogel-Heuser. "Increasing system test coverage in production automation systems." Control Engineering Practice 73 (April 2018): 171–85. http://dx.doi.org/10.1016/j.conengprac.2018.01.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Inoue, Ichiro, Yoshiyasu Yamada, and Toshiyuki Adachi. "A tools-system in decentralized production management systems." Computers in Industry 6, no. 6 (December 1985): 465–76. http://dx.doi.org/10.1016/0166-3615(85)90027-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Park, Hwa Gyoo, and Jun Seok Lee. "An expert classification system for production system." Computers & Industrial Engineering 35, no. 1-2 (October 1998): 17–20. http://dx.doi.org/10.1016/s0360-8352(98)00009-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Damayanti, Astrilia, Sarto Sarto, and Wahyudi Budi Sediawan. "Biohydrogen Production by Reusing Immobilized Mixed Culture in Batch System." International Journal of Renewable Energy Development 9, no. 1 (January 16, 2020): 37–42. http://dx.doi.org/10.14710/ijred.9.1.37-42.

Full text
Abstract:
Biohydrogen production via dark fermentation is a prospective renewable energy technology. In the process, reused of immobilized mixed culture is very important as their activities greatly influencehydrogen production. The aim of this work was to evaluate the reuse of alginate beads affecting the biohydrogen production for 45 days. This study in batch reactor were performed using glucose 10 M as substrate, alginate and activated carbon as immobilization matrix materials, chicken eggshell as buffer, and cow dung biodigester as mixed culture. Hydrogen and pH on fermentation product are investigated by gas chromatography (GC) technique and pH meter, respectively. The colony diameter on immobilized and co-immobilized mixed culture was observed using optical microscope and colony diameter was measured using Image-Pro Plus Software v4.5.0.29. The surface morphology of immobilization and co-immobilization beads were determined using scanning electron microscope (SEM). The results showed that the colonies growth observed using optical microscopy or SEM was apparent only in the immobilization of mixed culture. The average growth and diameter of colonies per day were 90 colonies and 0.025 mm, respectively. The weight of beads and pH during the 45-day fermentation process for bead immobilization of mixed culture were 1.32–1.95 g and 6.25–6.62, correspondingly, meanwhile, the co-immobilizations of the mixed culture were 1.735–2.21g and 6.25–6.61, respectively. In addition, the average hydrogen volume of glucose fermented using an eggshell buffer and reusing the immobilization and co-immobilization beads was 18.91 mL for 15 cycles.©2020. CBIORE-IJRED. All rights reserved
APA, Harvard, Vancouver, ISO, and other styles
40

HONCHARENKO, Nataliia. "IMPROVEMENT OF SYSTEM CERTIFICATION OF ORGANIC AGRARIAN PRODUCTION IN UKRAINE." Herald of Khmelnytskyi National University. Economic sciences 312, no. 6(2) (December 29, 2022): 103–9. http://dx.doi.org/10.31891/2307-5740-2022-312-6(2)-19.

Full text
Abstract:
The article is devoted to the actual problem of forming a certification system for organic production of agricultural products. It was determined that for the successful development of organic production, certification is of decisive importance, as it is a tool for protecting the rights of consumers and conscientious producers. It is noted that a clearly formed system of standardization and certification of organic production of agricultural products has not been implemented in Ukraine yet. This complicates the development of the organic sector, reduces the competitiveness of domestic producers on the international and national markets. It was established that, taking into account the export orientation, it is proposed to apply the public-private model of the organic production certification system. It has been proven that in modern conditions such a model has critical drawbacks for the domestic organic sector: duplication and irrational distribution of accreditation and state supervision functions between state authorities, the growth of corruption risks, the creation of obstacles to competition on the market of certification services, the complexity of implementation in the conditions of budgetary limitations financing. It is proposed to improve the proposed public-private model of the organic production certification system by creating a collegial non-governmental authority — the Accreditation Commission of Organic Production. The reduction of state regulation will contribute to the rapid formation of the certification system, the growth of competition in the certification services market, and the improvement of regulatory and institutional support for certification for domestic stakeholders.
APA, Harvard, Vancouver, ISO, and other styles
41

Okubo, Bin. "Reserve production capacity in a production inventory system." International Journal of Production Economics 44, no. 1-2 (June 1996): 159–66. http://dx.doi.org/10.1016/0925-5273(95)00101-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Chiarini, Andrea, Claudio Baccarani, and Vittorio Mascherpa. "Lean production, Toyota Production System and Kaizen philosophy." TQM Journal 30, no. 4 (June 11, 2018): 425–38. http://dx.doi.org/10.1108/tqm-12-2017-0178.

Full text
Abstract:
Purpose The purpose of this paper is to compare principles from the original Toyota Production System (TPS), the Toyota Way 2001 and Kaizen philosophy with principles derived from Japanese Zen Buddhism. The paper would also like to enlarge the debate concerning some lessons learnt from Japanese culture in order to avoid Lean implementation failures. Design/methodology/approach The original English version of Taiichi Ohno’s book dedicated to the TPS, the Toyota Way 2001 and other relevant papers regarding Kaizen were reviewed and analyzed. The principles that emerged from the review of this literature were then compared with similar philosophical principles from Japanese Soto Zen Buddhism. The literature concerning Zen philosophy was methodically analyzed and categorized using the content analysis. Findings The results of this research show many theoretical parallelisms as well as lessons for practitioners, in particular referring to principles such as Jidoka, just-in-time, waste identification and elimination, challenge, Kaizen, Genchi Genbutsu, respect for people and teamwork. Research limitations/implications Analysis and results are mainly based on the literature that was found, reviewed and categorized, along with the knowledge of authors on Zen philosophy. Results could differ depending on the literature reviewed and categorized. Practical implications The results of this research bring food for thought to practitioners in terms of lessons learnt from Japanese culture, Toyota principles and management style in order to avoid Lean implementation failures. Originality/value This is one of the first papers which compares Lean-TPS and Kaizen principles with the Zen philosophy to try to learn lessons for succeeding in Lean implementation.
APA, Harvard, Vancouver, ISO, and other styles
43

Komesker, Simon, William Motsch, Jens Popper, Aleksandr Sidorenko, Achim Wagner, and Martin Ruskowski. "Enabling a Multi-Agent System for Resilient Production Flow in Modular Production Systems." Procedia CIRP 107 (2022): 991–98. http://dx.doi.org/10.1016/j.procir.2022.05.097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

TAKAHASHI, K., R. MURAMATSU, and K. ISHII. "Feedback method of production ordering system in multi-stage production and inventory systems." International Journal of Production Research 25, no. 6 (June 1987): 925–41. http://dx.doi.org/10.1080/00207548708919885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Nichols, M. A. "IRRIGATION SYSTEM AND CULTURAL PRACTICES FOR CROP PRODUCTION UNDER CONTROL ENVIRONMENT PRODUCTION SYSTEM." Acta Horticulturae, no. 710 (June 2006): 71–78. http://dx.doi.org/10.17660/actahortic.2006.710.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Oborski, Przemysław. "Integrated Monitoring System of Production Processes." Management and Production Engineering Review 7, no. 4 (December 1, 2016): 86–96. http://dx.doi.org/10.1515/mper-2016-0039.

Full text
Abstract:
Abstract Integrated monitoring system for discrete manufacturing processes is presented in the paper. The multilayer hardware and software reference model was developed. Original research are an answer for industry needs of the integration of information flow in production process. Reference model corresponds with proposed data model based on multilayer data tree allowing to describe orders, products, processes and save monitoring data. Elaborated models were implemented in the integrated monitoring system demonstrator developed in the project. It was built on the base of multiagent technology to assure high flexibility and openness on applying intelligent algorithms for data processing. Currently on the base of achieved experience an application integrated monitoring system for real production system is developed. In the article the main problems of monitoring integration are presented, including specificity of discrete production, data processing and future application of Cyber-Physical-Systems. Development of manufacturing systems is based more and more on taking an advantage of applying intelligent solutions into machine and production process control and monitoring. Connection of technical systems, machine tools and manufacturing processes monitoring with advanced information processing seems to be one of the most important areas of near future development. It will play important role in efficient operation and competitiveness of the whole production system. It is also important area of applying in the future Cyber-Physical-Systems that can radically improve functionally of monitoring systems and reduce the cost of its implementation.
APA, Harvard, Vancouver, ISO, and other styles
47

Babu, Dr D. Suresh. "Production Performance of Murrah Buffaloes under Organized Dairy Farm Production System in West Godavari District of Andhra Pradesh." Indian Journal of Applied Research 3, no. 8 (October 1, 2011): 674–75. http://dx.doi.org/10.15373/2249555x/aug2013/217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

M. Mazurkiewicz, Zygmunt. "The Economy as a System of Useful Production." Gospodarka Narodowa 272, no. 4 (August 31, 2014): 165–77. http://dx.doi.org/10.33119/gn/100908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Lee, Jay, Edzel Lapira, Shanhu Yang, and Ann Kao. "Predictive Manufacturing System - Trends of Next-Generation Production Systems." IFAC Proceedings Volumes 46, no. 7 (May 2013): 150–56. http://dx.doi.org/10.3182/20130522-3-br-4036.00107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Hatono, Itsuo, Tohikazu Nishiyama, and Hiroyuki Tamura. "Real-Time Scheduling System for Distributed Production Management Systems." IFAC Proceedings Volumes 30, no. 14 (July 1997): 245–50. http://dx.doi.org/10.1016/s1474-6670(17)42729-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography