Academic literature on the topic 'Système Lagrangien'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Système Lagrangien.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Système Lagrangien"
Cresson, Jacky, and Sébastien Darses. "Plongement stochastique des systèmes lagrangiens." Comptes Rendus Mathematique 342, no. 5 (March 2006): 333–36. http://dx.doi.org/10.1016/j.crma.2005.12.028.
Full textWang, Qing-Guo. "Identifiability of Lagrangian Systems With Application to Robot Manipulators." Journal of Dynamic Systems, Measurement, and Control 113, no. 2 (June 1, 1991): 289–94. http://dx.doi.org/10.1115/1.2896377.
Full textJumarie, Guy. "A New Class of P.I.D. Parameter Adaptation Algorithms for Robot Manipulators." Robotica 9, no. 1 (January 1991): 107–9. http://dx.doi.org/10.1017/s0263574700015629.
Full textBillionnet, A., and S. Elloumi. "Placement de tâches dans un système distribué et dualité lagrangienne." RAIRO - Operations Research 26, no. 1 (1992): 83–97. http://dx.doi.org/10.1051/ro/1992260100831.
Full textCHIERCHIA, LUIGI, and FABIO PUSATERI. "Analytic Lagrangian tori for the planetary many-body problem." Ergodic Theory and Dynamical Systems 29, no. 3 (June 2009): 849–73. http://dx.doi.org/10.1017/s0143385708000503.
Full textFathi, Albert. "Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 324, no. 9 (May 1997): 1043–46. http://dx.doi.org/10.1016/s0764-4442(97)87883-4.
Full textKrupková, Olga. "Noether theorem and first integrals of constrained Lagrangean systems." Mathematica Bohemica 122, no. 3 (1997): 257–65. http://dx.doi.org/10.21136/mb.1997.126152.
Full textMason, Evan, Francois Colas, and Josep L. Pelegrí. "A Lagrangian study tracing water parcel origins in the Canary Upwelling System." Scientia Marina 76, S1 (August 31, 2012): 79–94. http://dx.doi.org/10.3989/scimar.03608.18d.
Full textGay-Balmaz, François, and Hiroaki Yoshimura. "Dirac structures and variational formulation of port-Dirac systems in nonequilibrium thermodynamics." IMA Journal of Mathematical Control and Information 37, no. 4 (July 27, 2020): 1298–347. http://dx.doi.org/10.1093/imamci/dnaa015.
Full textTamminen, Eero V. "Strong Lagrange duality and the maximum principle for nonlinear discrete time optimal control problems." ESAIM: Control, Optimisation and Calculus of Variations 25 (2019): 20. http://dx.doi.org/10.1051/cocv/2018012.
Full textDissertations / Theses on the topic "Système Lagrangien"
Gastou-Chassaing, Marie-Isabelle. "Chaos lagrangien entre ellipses confocales : étude théorique, numérique et expérimentale." Vandoeuvre-les-Nancy, INPL, 1995. http://www.theses.fr/1995INPL103N.
Full textMaftei, Radu. "Analyse stochastique pour la simulation de particules lagrangiennes : application aux collisions de particules colloïdes." Thesis, Université Côte d'Azur (ComUE), 2017. http://www.theses.fr/2017AZUR4130/document.
Full textThis thesis broadly concerns colloidal particle simulation which plays an important role in understanding two-phase flows. More specifically, we track the particles inside a turbulent flow and model their dynamics as a stochastic process, their interactions as perfectly elastic collisions where the influence of the flow is modelled by a drift on the velocity term. By coupling each particle and considering their relative position and velocity, the perfectly elastic collision becomes a specular reflection condition. We put forward a time discretisation scheme for the resulting Lagrange system with specular boundary conditions and prove that the convergence rate of the weak error decreases at most linearly in the time discretisation step. The evidence is based on regularity results of the Feynman-Kac PDE and requires some regularity on the drift. We numerically experiment a series of conjectures, amongst which the weak error linearly decreasing for drifts that do not comply with the theorem conditions. We test the weak error convergence rate for a Richardson Romberg extrapolation. We finally deal with Lagrangian/Brownian approximations by considering a Lagrangian system where the velocity component behaves as a fast process. We control the weak error between the position of the Lagrangian system and an appropriately chosen uniformly elliptic diffusion process and subsequently prove a similar control by introducing a specular reflecting boundary on the Lagrangian and an appropriate reflection on the elliptic diffusion
Aghannan, Nasradine. "Contrôle de réacteur de polymérisation, observateur et invariance." Paris, ENMP, 2003. https://pastel.archives-ouvertes.fr/tel-00006598.
Full textMehrenberger, Michel. "Inégalités d'observabilité et résolution adaptative de l'équation de Vlasov par éléments finis hiérarchiques." Université Louis Pasteur (Strasbourg) (1971-2008), 2004. http://www.theses.fr/2004STR13124.
Full textFrankel, Pierre. "Comportement asymptotique de systèmes dynamiques discrets et continus en Optimisation et EDP : algorithmes de minimisation proximale alternée et dynamique du deuxieme ordre à dissipation évanescente." Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20066.
Full textThe first part of this thesis is devoted to the study of the asymptotic behavior of solutions of a second order dynamic system with vanishing dissipation. The dynamic system is studied in its continuous version and in its discrete version via an algorithm.The second part is about the study of several proximal-type algorithms. We show that these algorithms converge to solutions of some minimization problems. In each case, an application is given in the area of domain decomposition for PDE's
Frankel, Pierre. "Comportement asymptotique de systèmes dynamiques discrets et continus en Optimisation et EDP: algorithmes de minimisation proximale alternée et dynamique du deuxième ordre à dissipation évanescente." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2001. http://tel.archives-ouvertes.fr/tel-00637390.
Full textBaudet, Vincent. "Modélisation et simulation paramétrable d'objets déformables.Application aux traitements des cancers pulmonaires." Phd thesis, Université Claude Bernard - Lyon I, 2006. http://tel.archives-ouvertes.fr/tel-00279986.
Full textEn partenariat avec le Centre anticancéreux Léon Bérard de Lyon et dans le projet ETOILE, nous proposons de rechercher des modèles de simulations des objets déformables qui prendraient en considération, en plus de la géométrie issue directement de l'imagerie médicale, les paramètres physiologiques mesurés sur les patients afin de pouvoir garantir de meilleures marges d'erreur, dans le cas des tumeurs pulmonaires.
Dans cette thèse, nous avons choisi de modéliser les poumons avec des systèmes masses-ressorts qui sont généralement utilisés dans le monde de l'animation pour le réalisme et la rapidité.
Pour rendre le système précis et directement paramétré par les données mécaniques du patient, nous nous sommes inspirés des travaux de Van Gelder qui introduit un contrôle par les caractéristiques rhéologiques d'un matériaux "2D" linéaire élastique homogène isotrope.
Cependant, après vérification et étude théorique de ce modèle, il est apparut que celui-ci bien que donnant des animations réalistes était erroné.
Nous avons donc entrepris une étude lagrangienne qui nous a permis de rendre ce modèle 2D rectangulaire, puis 3D à base de brique élémentaire cubique, paramétrable.
Nous avons d'autre part déterminer la robustesse de notre système à l'aide de tests d'étirement, gonflement, fléchissement et cisaillement et par comparaison à des tests effectués sur des modèles éléments finis.
Cette thèse explique ainsi comment ce modèle paramétrable a été obtenu, et comment il pourra être relié avec les données physiologiques et dans quelle précision.
Bodrero, Alain. "Contrôle d'un champ acoustique à l'intérieur d'une cavité par des moyens passifs en régime harmonique." Rouen, 1999. http://www.theses.fr/1999ROUES029.
Full textMADERNA, EZEQUIEL. "Symetries de systemes lagrangiens." Lyon, École normale supérieure (sciences), 2000. http://www.theses.fr/2000ENSL0171.
Full textChen, Y.-C. "Anti-integrability in Lagrangian systems." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.597512.
Full textBooks on the topic "Système Lagrangien"
Mielke, Alexander. Hamiltonian and Lagrangian flows on center manifolds: With applications to elliptic variational problems. Berlin: Springer-Verlag, 1991.
Find full textservice), SpringerLink (Online, ed. Critical Point Theory for Lagrangian Systems. Basel: Springer Basel AG, 2012.
Find full textAmbrosetti, A. Periodic solutions of singular Lagrangian systems. Boston: Birkhäuser, 1993.
Find full textAmbrosetti, Antonio, and Vittorio Coti Zelati. Periodic Solutions of Singular Lagrangian Systems. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4612-0319-3.
Full textMazzucchelli, Marco. Critical Point Theory for Lagrangian Systems. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0163-8.
Full textAn introduction to Lagrangian mechanics. 2nd ed. Hackensack,] New Jersey: World Scientific, 2015.
Find full textBrizard, Alain Jean. An introduction to Lagrangian mechanics. Hackensack, NJ: World Scientific, 2008.
Find full textBrizard, Alain Jean. An introduction to Lagrangian mechanics. Hackensack, NJ: World Scientific, 2008.
Find full textBook chapters on the topic "Système Lagrangien"
Mielke, Alexander. "Lagrangian systems." In Hamiltonian and Lagrangian Flows on Center Manifolds, 61–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0097550.
Full textGignoux, Claude, and Bernard Silvestre-Brac. "Lagrangian Systems." In Solved Problems in Lagrangian and Hamiltonian Mechanics, 51–109. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2393-3_2.
Full textDesprés, Bruno. "Systèmes lagrangiens multidimensionnels." In Lois de Conservations Eulériennes, Lagrangiennes et Méthodes Numériques, 221–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11657-5_7.
Full textPrants, Sergey V., Michael Yu Uleysky, and Maxim V. Budyansky. "The Dynamical Systems Theory Approach to Transport and Mixing in Fluids." In Lagrangian Oceanography, 1–17. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53022-2_1.
Full textDesprés, Bruno. "Systems and Lagrangian systems." In Frontiers in Mathematics, 93–163. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50355-4_3.
Full textBrogliato, Bernard. "Nonsmooth Lagrangian Systems." In Communications and Control Engineering, 241–370. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28664-8_5.
Full textRen, Wei, and Yongcan Cao. "Networked Lagrangian Systems." In Communications and Control Engineering, 147–83. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-169-1_6.
Full textTeodorescu, Petre P. "Lagrangian Mechanics." In Mechanical Systems, Classical Models, 1–114. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2764-1_1.
Full textShabana, Ahmed. "Lagrangian Dynamics." In Vibration of Discrete and Continuous Systems, 55–105. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04348-3_2.
Full textShabana, A. A. "Lagrangian Dynamics." In Vibration of Discrete and Continuous Systems, 53–97. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-4036-5_2.
Full textConference papers on the topic "Système Lagrangien"
Yoshimura, Hiroaki. "On the Lagrangian Formalism of Nonholonomic Mechanical Systems." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84273.
Full textCho, Hancheol, and Firdaus E. Udwadia. "Inverse Problem for Lagrangian Dynamics for Multi-Degree-of-Freedom Systems With Linear Damping." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87196.
Full textYoshimura, Hiroaki. "A Geometric Approach to Constraint Stabilization for Holonomic Lagrangian Systems." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35429.
Full textGou Nishida, Masaki Yamakita, and Zhi-wei Luo. "Field port-Lagrangian systems with degenerate Lagrangian and external forces." In 2007 46th IEEE Conference on Decision and Control. IEEE, 2007. http://dx.doi.org/10.1109/cdc.2007.4434261.
Full textBaleanu, Dumitru, and Sami I. Muslih. "About Lagrangian Formulation of Classical Fields Within Riemann-Liouville Fractional Derivatives." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84390.
Full text"Lagrangian Road Pricing." In International Conference on Operations Research and Enterprise Systems. SciTePress - Science and and Technology Publications, 2013. http://dx.doi.org/10.5220/0004287102920297.
Full textFeeny, B. F. "D’Alembert’s Principle and the Equations of Motion for Nonholonomic Systems." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14533.
Full textNacivet, Samuel, Christophe Pierre, Fabrice Thouverez, and Louis Jezequel. "Analysis of Periodic Frictional Contact in Finite Elements Problems." In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21735.
Full textFrye, Jason P., and Brian C. Fabien. "Control of Constrained Systems Described by Lagrangian DAEs." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47502.
Full textKoganezawa, Koichi, and Kazuomi Kaneko. "ODE Methods for Solving the Multibody Dynamics With Constraints." In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/vib-8237.
Full textReports on the topic "Système Lagrangien"
Thierauf, Rainer. A Lagrangian for a system of two dyons. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.5712.
Full textFelmer, Patricio L. Multiple Solutions for Lagrangian Systems in T Superscript n. Fort Belvoir, VA: Defense Technical Information Center, July 1989. http://dx.doi.org/10.21236/ada210646.
Full textBernatska, Julia, and Petro Holod. • Harmonic Analysis on Lagrangian Manifolds of Integrable Hamiltonian Systems. GIQ, 2012. http://dx.doi.org/10.7546/giq-14-2013-61-73.
Full textBernatska and Petro Holod, Julia Bernatska and Petro Holod. Harmonic Analysis on Lagrangian Manifolds of Integrable Hamiltonian Systems. Journal of Geometry and Symmetry in Physics, 2013. http://dx.doi.org/10.7546/jgsp-29-2013-39-51.
Full textIde, Kayo. An Operational Technology for Assimilating Lagrangian Data Based on Dynamical Systems Techniques. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada613573.
Full textIde, Kayo. An Operational Technology for Assimilating Lagrangian Data Based on Dynamical Systems Techniques. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada534008.
Full textJones, Christopher K. An Operational Technology for Assimilating Lagrangian Data Based on Dynamical Systems Techniques. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada534142.
Full textIde, Kayo. An Operational Technology for Assimilating Lagrangian Data Based on Dynamical Systems Techniques. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada573119.
Full textJones, Christopher K. An Operational Technology for Assimilating Lagrangian Data Based on Dynamical Systems Techniques. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada573394.
Full textJones, Christopher K. An Operational Technology for Assimilating Lagrangian Data Based on Dynamical Systems Techniques. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada630941.
Full text