Books on the topic 'Système Lagrangien'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 books for your research on the topic 'Système Lagrangien.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Mielke, Alexander. Hamiltonian and Lagrangian flows on center manifolds: With applications to elliptic variational problems. Berlin: Springer-Verlag, 1991.
Find full textservice), SpringerLink (Online, ed. Critical Point Theory for Lagrangian Systems. Basel: Springer Basel AG, 2012.
Find full textAmbrosetti, A. Periodic solutions of singular Lagrangian systems. Boston: Birkhäuser, 1993.
Find full textAmbrosetti, Antonio, and Vittorio Coti Zelati. Periodic Solutions of Singular Lagrangian Systems. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4612-0319-3.
Full textMazzucchelli, Marco. Critical Point Theory for Lagrangian Systems. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0163-8.
Full textAn introduction to Lagrangian mechanics. 2nd ed. Hackensack,] New Jersey: World Scientific, 2015.
Find full textBrizard, Alain Jean. An introduction to Lagrangian mechanics. Hackensack, NJ: World Scientific, 2008.
Find full textBrizard, Alain Jean. An introduction to Lagrangian mechanics. Hackensack, NJ: World Scientific, 2008.
Find full textDeriglazov, Alexei. Classical mechanics: Hamiltonian and Lagrangian Formalism. Berlin: Springer Verlag, 2010.
Find full textKamada, Ray. Chaos metrics for testing Lagrangian particle models. Monterey, Calif: Naval Postgraduate School, 1993.
Find full textClassical mechanics: Hamiltonian and Lagrangian Formalism. Berlin: Springer Verlag, 2010.
Find full textMušicki, Đorđe. Degenerate systems in generalized mechanics. Beograd: Matematički Institut, 1992.
Find full textMušicki, Đorđe. Degenerate systems in generalized mechanics. Beograd: Matematički Institut, 1992.
Find full textBernard, Silvestre-Brac, and SpringerLink (Online service), eds. Solved Problems in Lagrangian and Hamiltonian Mechanics. Dordrecht: Springer Netherlands, 2009.
Find full textOrtega, Romeo, Antonio Loría, Per Johan Nicklasson, and Hebertt Sira-Ramírez. Passivity-based Control of Euler-Lagrange Systems. London: Springer London, 1998. http://dx.doi.org/10.1007/978-1-4471-3603-3.
Full textGans, Roger F. Engineering Dynamics: From the Lagrangian to Simulation. New York, NY: Springer New York, 2013.
Find full textL, Mangiarotti, and Sardanashvili G. A, eds. New Lagrangian and Hamiltonian methods in field theory. Singapore: World Scientific, 1997.
Find full textLagrangian and Hamiltonian mechanics: Solutions to the exercises. Singapore: World Scientific, 1999.
Find full textȘandru, Ovidiu-Ilie. Local Hamilton-Lagrange structures: Applications in the partial differential equations theory. Timișoara: Universitatea din Timișoara, Facultatea de Matematică, 1994.
Find full textFrancesco, Bullo, and Fujimoto Kenji 1947-, eds. Lagrangian and Hamiltonian methods for nonlinear control 2006: Proceedings from the 3rd IFAC workshop, Nagoya, Japan, July 2006. Berlin: Springer, 2007.
Find full textA, Astolfi, Gordillo Francisco 1964-, Schaft, A. J. van der, and International Federation of Automatic Control, eds. Lagrangian and Hamiltonian methods for nonlinear control 2003: A proceedings volume from the 2nd IFAC Workshop, Seville, Spain, 3-5 April, 2003. Oxford: Published for the International Federation of Automatic Control by Elsevier, 2003.
Find full textIFAC Workshop (2000 Princeton, N.J.). Lagrangian and Hamiltonian methods for nonlinear control: A proceedings volume from the IFAC Workshop, Princeton, New Jersey, USA, 16-18 March 2000. Oxford: Pergamon, 2000.
Find full textGeneralized Hamiltonian formalism for field theory: Constraint systems. Singapore: World Scientific, 1995.
Find full textBaldomá, Inmaculada. Exponentially small splitting of invariant manifolds of parabolic points. Providence, RI: American Mathematical Society, 2004.
Find full textOrdinary differential equations: Qualitative theory. Providence, R.I: American Mathematical Society, 2010.
Find full textauthor, Winternitz Pavel, ed. Classification and identification of Lie algebras. Providence, Rhode Island: American Mathematical Society, 2014.
Find full text(Dietmar), Salamon D., ed. J-holomorphic curves and symplectic topology. 2nd ed. Providence, R.I: American Mathematical Society, 2012.
Find full text1980-, Blazquez-Sanz David, Morales Ruiz, Juan J. (Juan José), 1953-, and Lombardero Jesus Rodriguez 1961-, eds. Symmetries and related topics in differential and difference equations: Jairo Charris Seminar 2009, Escuela de Matematicas, Universidad Sergio Arboleda, Bogotá, Colombia. Providence, R.I: American Mathematical Society, 2011.
Find full textMann, Peter. Near-Integrable Systems. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0024.
Full textA Students Guide To Lagrangians And Hamiltonians. Cambridge University Press, 2013.
Find full textMazzucchelli, Marco. Critical Point Theory for Lagrangian Systems. Springer, 2011.
Find full textMann, Peter. Point Transformations in Lagrangian Mechanics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0009.
Full textMann, Peter. Constrained Lagrangian Mechanics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0008.
Full textMann, Peter. The Jacobi Energy Function. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0010.
Full textDeriglazov, Alexei. Classical Mechanics: Hamiltonian and Lagrangian Formalism. Springer, 2018.
Find full textDeriglazov, Alexei. Classical Mechanics: Hamiltonian and Lagrangian Formalism. Springer, 2016.
Find full textLagrangian Transport in Geophysical Jets and Waves: The Dynamical Systems Approach (Interdisciplinary Applied Mathematics). Springer, 2006.
Find full textGignoux, Claude, and Bernard Silvestre-Brac. Solved Problems in Lagrangian and Hamiltonian Mechanics. Springer, 2014.
Find full textA Students Guide to Lagrangians and Hamiltonians. Cambridge University Press, 2013.
Find full textGans, Roger F. Engineering Dynamics: From the Lagrangian to Simulation. Springer, 2016.
Find full textGiachetta, G., G. Sardanashvily, and L. Mangiarotti. New Lagrangian and Hamiltonian Methods in Field Theory. World Scientific Pub Co Inc, 1994.
Find full textLagrangian and Hamiltonian Mechanics: Solutions to the Exercises. World Scientific Publishing Company, 1999.
Find full textWiggins, Stephen, and Roger M. Samelson. Lagrangian Transport in Geophysical Jets and Waves: The Dynamical Systems Approach. Springer, 2010.
Find full textLagrangian Reduction by Stages (Memoirs of the American Mathematical Society). American Mathematical Society, 2001.
Find full textLeonard, N. E., and R. Ortega. Lagrangian and Hamiltonian Methods for Nonlinear Control 2000 (IFAC Proceedings Volumes). Pergamon, 2000.
Find full text