Academic literature on the topic 'Système nerveux central – Dégénérescence'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Système nerveux central – Dégénérescence.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Système nerveux central – Dégénérescence"
Talmont, Franck, Anastassia Hatzoglou, and Olivier Cuvillier. "La sclérose en plaques et les médicaments immuno-modulateurs des récepteurs de la sphingosine 1-phosphate." médecine/sciences 36, no. 3 (March 2020): 243–52. http://dx.doi.org/10.1051/medsci/2020026.
Full textMareš, P. "Le système nerveux central." Electroencephalography and Clinical Neurophysiology 60, no. 2 (February 1985): 181. http://dx.doi.org/10.1016/0013-4694(85)90028-8.
Full textCharnay, Patrick, Fanny Coulpier, Laurence Decker, Benoît Funalot, Jean-Michel Vallat, Federico Garcia-Bragado, and Piotr Topilko. "Système nerveux central, système nerveux périphérique : comment maintenir la frontière ?" Bulletin de l'Académie Nationale de Médecine 194, no. 4-5 (April 2010): 743–44. http://dx.doi.org/10.1016/s0001-4079(19)32270-8.
Full textLavallée, Philippa. "Hémosidérose du système nerveux central." Neurologie.com 2, no. 2 (February 2010): 48. http://dx.doi.org/10.1684/nro.2009.0192.
Full textBazin, C. "Tuberculose du système nerveux central." EMC - Neurologie 1, no. 2 (January 2004): 1–15. http://dx.doi.org/10.1016/s0246-0378(04)29869-4.
Full textLabauge, P., F. Parker, F. Chapon, and E. Tournier-Lasserve. "Cavernomes du système nerveux central." EMC - Neurologie 5, no. 1 (January 2008): 1–7. http://dx.doi.org/10.1016/s0246-0378(08)46616-2.
Full textde Boysson, H., C. Pagnoux, and M. Zuber. "Vascularites du système nerveux central." EMC - Neurologie 9, no. 4 (October 2012): 1–25. http://dx.doi.org/10.1016/s0246-0378(12)54309-5.
Full textValeyre, D., C. Chapelon-Abric, C. Belin, and J. L. Dumas. "Sarcoïdose du système nerveux central." La Revue de Médecine Interne 19, no. 6 (June 1998): 409–14. http://dx.doi.org/10.1016/s0248-8663(98)80865-5.
Full textSidi Mohamed, S., C. Ethmane, M. Ahmedou, and A. Klaib. "Hémangioblastome du système nerveux central." Neurochirurgie 60, no. 6 (December 2014): 353. http://dx.doi.org/10.1016/j.neuchi.2014.10.087.
Full textJauréguiberry, S., and E. Caumes. "Parasitoses du système nerveux central." EMC - Traité de médecine AKOS 2, no. 2 (January 2007): 1–6. http://dx.doi.org/10.1016/s1634-6939(07)45409-6.
Full textDissertations / Theses on the topic "Système nerveux central – Dégénérescence"
Drouin-Ouellet, Janelle. "DÉGÉNÉRESCENCE NEURONALE ET NEUROINFLAMMATION : IDENTIFICATION DE NOUVEAUX ACTEURS POTENTIELS." Thesis, Université Laval, 2012. http://www.theses.ulaval.ca/2012/29303/29303.pdf.
Full textEyoum, Jong Laura. "Développement d'un ribozyme spécifique à l'ARNm de Tau pour contrer les Tauopathies." Master's thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/34496.
Full textOne of the main causes of Alzheimer’s disease and Tauopathies is the presence of neurofibrillary tangles (NFT). NFT consist in intracellular aggregation of the abnormally hyperphophorylated protein Tau. Several studies have shown that NFT are associated with the pathogenesis of neurodegenerative disorders and neurotoxicity. Moreover, it has been demonstrated that decreasing the level of Tau protein could prevent cognitive deficits in mouse models. Based on these studies, our hypothesis is that reducing the level of total Tau in the brain could decrease NFTs and delay the pathology. Our objective is to design a molecule that will target directly Tau mRNA instead of the hyperphosphorylated protein. We developed a modified delta-ribozyme, the SOFA (Specific On/Off Adaptor) ribozyme, which is able to cleave the Tau mRNA. Our ribozyme is composed of three components: the blocker, the biosensor, and the effector. We have designed delta-ribozymes that target constitutive exons of Tau mRNA as well as the exon 10 specific of Tau 4R. Therefore, we can target all the Tau isoforms. In this project, we first synthesized the delta-ribozyme by molecular cloning and we confirmed its effect by in vitro cleavage. Secondly, by transfecting it in neuronal cells we characterized its effects on Tau mRNA by RT-PCR. Finally, we produced AAV viruses and infected neuronal cells and characterized its effects on Tau mRNA by RT-PCR. This therapeutic approach is based on specificity and efficiency of the SOFA-ribozymes, which identify and cut the Tau mRNA. Thus, in this project we identified ribozymes 350 and 395 as potential good candidates able to cleave the Tau mRNA.
Montagne, Axel. "L'activateur tissulaire du plasminogène dans le système nerveux central : de la neuroprotection à l'imagerie moléculaire." Caen, 2012. http://www.theses.fr/2012CAEN3137.
Full textFibrinolysis with intravenous tissue plasminogen activator (tPA) is currently the only approved treatment in the acute phase of stroke. However, many experimental studies plead for a pro-excitotoxic effect of tPA on neurons. Through experimental studies, we demonstrated that tPA has pro-neurotoxic effects by interacting with GluN-2D-containing extrasynaptic NMDA receptors. We show that, during thrombolysis, the use of antagonists (UBP145 or memantine) specifically targeting NMDA receptors involved in the pro-excitotoxic effect of tPA would be an efficient adjunctive strategy. Molecular imaging allows early revealing and analyzing molecular events accompanying diseases that conventional imaging often evidences too late. Among contemporary methods of imaging, MRI has the unique advantage to be non-invasive and to provide a high spatial resolution. From this observation, we developed and optimized molecular imaging of endothelial activation with a contrast agent targeting molecules associated with inflammation, especially VCAM-1. Our works show that it is possible to evaluate inflammation of the central nervous system (CNS) with non-invasive and semi-quantitative manners, and a high sensitivity. This approach would allow selecting patients the most likely to benefit of anti-inflammatory treatment in the subacute phase of ischemic stroke
Bellavance, Marc-André. "Rôles des monocytes patrouilleurs en contextes neuropathologiques : élucidation de nouvelles fonctions neuroprotectrices." Doctoral thesis, Université Laval, 2014. http://hdl.handle.net/20.500.11794/25311.
Full textThe functional interplay between the central and peripheral immune systems is instrumental for preserving the CNS homeostasis. In neuropathological contexts, the reciprocal actions of peripheral and central immune cells orchestrate adaptive changes allowing the CNS to cope with the encountered stress, and eventually restore the homeostatic state. During the last decade, myeloid cells have emerged as key therapeutic targets for many autoimmune, neurodegenerative and even psychiatric diseases. Many disease susceptibility variants associated to myeloid cells were identified, but the precise functions assumed by monocytes have remained mostly elusive. The two studies described herein report on the pivotal role of patrolling monocytes in supporting neuronal surival during excitotoxicity, as well as eliminating Ab peptides from the CNS in a transgenic murine model of Alzheimer’s disease. In the first study, we show in mice that monocytes temporarily engraft the brain following a local excitotoxic insult induced by the glutamate analog kainate. Circulating levels of patrolling monocytes are also profoundly altered following the administration of the excitotoxin, and the targeted deletion of patrolling monocytes significantly compromised neuronal survival. Moreover, the extent of neuronal death negatively correlated with levels of patrolling monocytes in the blood. In the second study, we demonstrate that patrolling monocytes are selectively attracted to Ab-laden veins in the cerebral cortex of adult APP/PS1 mice. These monocytes do not crawl on the luminal side of Ab-positive arteries or Ab-free blood vessels. Interestingly, patrolling monocytes carry intracellular loads of Ab in veins, and eventually circulate back to the bloodstream. The selective removal of patrolling monocytes significantly increased Ab load in the brain. Therefore, our results indicate that patrolling monocytes are strategically positionned to promote neuronal survival following kainate administration and abate cerebral levels of Ab in APP/PS1 mice. These findings open new research and therapeutic avenues for Alzheimer’s disease as well as neuropathological disorders implicating excitotoxicity.
Vaur, Pauline Magda Marie. "Caractérisation des effets protecteurs du NAD+ et du Nicotinamide Riboside lors de la dégénérescence axonale dans le système nerveux central : Implications dans les processus neurodégénératifs." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066594/document.
Full textSynaptic and axonal degeneration (AxD) are major events in neurodegenerative diseases. Levels of NAD+, an important coenzyme for axonal integrity, are strongly reduced in different degeneration models so enhancing cellular NAD+ is one of the numerous therapeutic strategies against neuronal pathologies. Nicotinamide riboside (NR) is a good NAD+ precursor as it has already been shown to delay AxD in peripheral nervous system (PNS) and extracellular NAD+ conversion to NR was previously described in cell lines and in PNS. During my thesis project, we analyzed the role of NR metabolism to prevent degeneration processes in cortical neurons. Using an excitotoxicity model developed in microfluidic devices, we showed for the first time that both NAD+ and NR delay AxD in cortical neurons, with a more potent effect for NR. We confirm this differential effect in an in vivo ischemic model. Moreover, NR effect is mainly restricted to the axonal compartment and intracellular NAD+ depletion is reverted after NR application, suggesting that axonal integrity is totally dependent on NAD+ local metabolism. Furthermore, in a complete NAD+ depletion paradigm, NAD+ and NR have surprisingly the same strong effect, protecting equally neuronal death and AxD. Examination of the extracellular pathway suggest that NAD+ conversion to NR is limited in excitotoxicity but effective in the NAD+ depletion model. These results reveal that NR and NAD+ metabolism depend on the neurotoxic paradigm. Our results demonstrate that NR has a strong and local neuroprotective effect on AxD in several neurotoxic processes. These findings open new therapeutic strategies to prevent neurodegenerative diseases
Steverlynck, Céline. "Etude de l'expression et du trafic de la PrPc dans des cellules épithéliales d'origine intestinale : internalisation de protéine prion exogène." Paris 5, 2005. http://www.theses.fr/2005PA05P608.
Full textSimard, Alain. "Le rôle des cellules microgliales and les maladies neurodégénératives = : The role of microglia in neurodegenerative disease." Doctoral thesis, Université Laval, 2006. http://hdl.handle.net/20.500.11794/18341.
Full textViotti, Julien. "Contribution de la fonction transcriptionnelle de la parkine dans les maladies du système nerveux central : études des maladies d'Alzheimer, de Parkinson et des cancers cérébraux." Thesis, Nice, 2014. http://www.theses.fr/2014NICE4085/document.
Full textGliomas are the most common form of brain tumor, the etiology of which remains unknown. Several epidemiological studies have shown the existence of a correlation between neurodegenerative diseases and brain tumor. We hypothesis that these two pathology share common molecular denominators. Here I study the role of parkin (PK) an ubiquitin ligase responsible of early onset Parkinson diseases. Several arguments support the involvement of PK in glioma. Studies have shown that PK expression is alterated in many types of cancers. PK is also a transcription factor which can bind to p53 DNA and inhibits its transcription. P53 is a tumor suppressor often find inactivate in cancers (50%). There is evidence of specific somatic mutations found in glioma. My work was organize according to three axes 1- PK and Alzheimer disease: PK activates préséniline 1 expression and inhibits préséniline 2. 2- PK through XBP-1 regulates p53, a transcription factor activated by reticulum stress, which in turn regulates the expression of DJ-1. 3- PK and Glioma: There is a decrease in parkin expression that can be correlated to p53 expression increase in glioma biopsies. I show that p53 is able to activate PK synthesis, a mechanism abolish by p53 mutations in tumors
Guillemain, Isabelle. "Etude du rôle de la protéine Bcl-x dans le développement neuronal. Utilisation d'un modèle cellulaire, la lignée humaine Ntera2." Montpellier 2, 2000. http://www.theses.fr/2000MON20067.
Full textViollet-Grenet, Cécile. "Somatostatine et développement du système nerveux central." Paris 11, 1995. http://www.theses.fr/1995PA11T041.
Full textBooks on the topic "Système nerveux central – Dégénérescence"
Bourret, Paul. Anatomie du système nerveux central. 3rd ed. Paris: Expansion scientifique française, 1986.
Find full textDubret, Gérard. Eléments d'anatomie et physiologie du système nerveux central. Paris: Flammarion, 1985.
Find full textMarino, Vincent. Atlas photographique en couleur du système nerveux central. Paris: Springer-Verlag Paris, 2010.
Find full textDi Marino, Vincent, Yves Etienne, and Maurice Niddam. Atlas photographique en couleur du système nerveux central. Paris: Springer Paris, 2011. http://dx.doi.org/10.1007/978-2-287-99078-6.
Full textDebroise, Anne. Les mystères du cerveau: Connaître et soigner. Paris: Larousse, 2005.
Find full textBowsher, David. Introduction to the anatomy and physiology of the nervous system. 5th ed. Oxford: Blackwell Scientific Publications, 1988.
Find full textservice), ScienceDirect (Online, ed. Bacterial infections of the central nervous system. Edinburgh: Elsevier, 2010.
Find full textMagnetic resonance imaging of CNS disease: A teaching file. St. Louis: Mosby, 2002.
Find full textBook chapters on the topic "Système nerveux central – Dégénérescence"
Sunyach, M. P., C. Conter, and D. Frappaz. "Système nerveux central." In Tumeurs malignes rares, 235–42. Paris: Springer Paris, 2010. http://dx.doi.org/10.1007/978-2-287-72070-3_41.
Full textJaffré, A., B. Lacour, A. Danzon, and F. Molinié. "Système nerveux central." In Survie des patients atteints de cancer en France, 315–21. Paris: Springer Paris, 2007. http://dx.doi.org/10.1007/978-2-287-39310-5_41.
Full textGirard, Céline. "Système nerveux central et périphérique." In Manifestations dermatologiques des maladies d’organes, 239–53. Paris: Springer Paris, 2012. http://dx.doi.org/10.1007/978-2-287-72073-4_19.
Full textAmiel-Tison, Claudine, and Julie Gosselin. "Système nerveux central." In Pathologie neurologique périnatale et ses conséquences, 15–21. Elsevier, 2010. http://dx.doi.org/10.1016/b978-2-294-70895-4.00002-5.
Full textAmiel-Tison, Claudine, and Julie Gosselin. "Système nerveux central." In Pathologie neurologique périnatale et ses conséquences, 5–13. Elsevier, 2010. http://dx.doi.org/10.1016/b978-2-294-70895-4.00001-3.
Full text"Système nerveux central." In Protocoles de traitement. Service d’hémato-oncologie HDQ-HDL 2020 (9e édition), 311–15. Presses de l'Université Laval, 2020. http://dx.doi.org/10.2307/j.ctv1h0p3z5.54.
Full textCalvi, L., P. Schoettker, C. Wider, J. P. Mustaki, and E. Albrecht. "Système nerveux central et anesthésie." In Manuel pratique d'anesthésie, 457–90. Elsevier, 2015. http://dx.doi.org/10.1016/b978-2-294-73189-1.00028-3.
Full text"Dépresseurs du système nerveux central." In Terminologie et informations relatives aux drogues, 39–46. UN, 2019. http://dx.doi.org/10.18356/7da77811-fr.
Full text"Présentation générale du système nerveux central." In Atlas photographique en couleur du système nerveux central, 3–5. Paris: Springer Paris, 2011. http://dx.doi.org/10.1007/978-2-287-99078-6_1.
Full text"Lymphome primaire du système nerveux central." In Protocoles de traitement. Service d’hémato-oncologie HDQ-HDL 2020 (9e édition), 168–71. Presses de l'Université Laval, 2020. http://dx.doi.org/10.2307/j.ctv1h0p3z5.30.
Full textConference papers on the topic "Système nerveux central – Dégénérescence"
Oujdad, S., S. Zafad, H. El Attar, and I. Ben Yahya. "Histiocytose langerhansienne de l’adulte : à propos d’un cas." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206603013.
Full text