Academic literature on the topic 'Szégö projector'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Szégö projector.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Szégö projector"

1

McNeal, J. D., and E. M. Stein. "The Szegö projection on convex domains." Mathematische Zeitschrift 224, no. 4 (1997): 519–53. http://dx.doi.org/10.1007/pl00004593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Monguzzi, Alessandro, and Marco M. Peloso. "Regularity of the Szegö projection on model worm domains." Complex Variables and Elliptic Equations 62, no. 9 (2017): 1287–313. http://dx.doi.org/10.1080/17476933.2016.1250409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Burns, Daniel, and Victor Guillemin. "The Tian–Yau–Zelditch Theorem and Toeplitz Operators." Journal of the Institute of Mathematics of Jussieu 10, no. 3 (2011): 449–61. http://dx.doi.org/10.1017/s1474748011000016.

Full text
Abstract:
AbstractZelditch's proof of the Tian–Yau–Zelditch Theorem makes use of the Boutet de Monvel–Sjöstrand results on the asymptotic properties of Szegö projectors for strictly pseudoconvex domains. However, as we will show below, the theorem is also closely related to another theorem of Boutet de Monvel's, namely his wave trace formula for Toeplitz operators. Finally, we will derive, for the pseudoconvex manifolds considered by Zelditch in his proof of the Tian–Yau–Zelditch Theorem, an analogue of another result of Boutet de Monvel's, the extendability theorem of Berndtsson for holomorphic functio
APA, Harvard, Vancouver, ISO, and other styles
4

Harrington, Phillip S., Marco M. Peloso, and Andrew S. Raich. "Regularity equivalence of the Szegö projection and the complex Green operator." Proceedings of the American Mathematical Society 143, no. 1 (2014): 353–67. http://dx.doi.org/10.1090/s0002-9939-2014-12393-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Haimeng, and Wei Wang. "On Octonionic Regular Functions and the Szegö Projection on the Octonionic Heisenberg Group." Complex Analysis and Operator Theory 8, no. 6 (2013): 1285–324. http://dx.doi.org/10.1007/s11785-013-0324-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Munasinghe, Samangi, and Yunus E. Zeytuncu. "Irregularity of the Szegö Projection on Bounded Pseudoconvex Domains in $${\mathbb{C}^2}$$ C 2." Integral Equations and Operator Theory 82, no. 3 (2015): 417–22. http://dx.doi.org/10.1007/s00020-015-2227-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Arai, Hitoshi, and Takahiro Mizuhara. "Morrey Spaces on Spaces of Homogeneous Type and Estimates for □ b and the Cauchy-Szegö Projection." Mathematische Nachrichten 185, no. 1 (1997): 5–20. http://dx.doi.org/10.1002/mana.3211850102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Constales, Denis, and Rolf Sören Kraußhar. "Octonionic Kerzman–Stein Operators." Complex Analysis and Operator Theory 15, no. 6 (2021). http://dx.doi.org/10.1007/s11785-021-01152-0.

Full text
Abstract:
AbstractIn this paper we consider generalized Hardy spaces in the octonionic setting associated to arbitrary Lipschitz domains where the unit normal field exists almost everywhere. First we discuss some basic properties and explain structural differences to the associative Clifford analysis setting. The non-associativity requires special attention in the definition of an appropriate inner product and hence in the definition of a generalized Szegö projection. Whenever we want to apply classical theorems from reproducing kernel Hilbert spaces we first need to switch to the consideration of real-
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Szégö projector"

1

Sun, Ruoci. "Comportement en grand temps et intégrabilité de certaines équations dispersives sur l'espace de Hardy Long time behavior of the NLS-Szegö equation Traveling waves of the quintic focusing NLS-Szegö equation Complete integrability of the Benjamin-Ono equation on the multi-soliton manifolds." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS111.

Full text
Abstract:
On s'intéresse dans cette thèse à trois modèles d'équations hamiltoniennes dispersives non linéaires : l'équation de Schrödinger cubique défocalisante sur le cercle, filtrée par le projecteur de Szegö, qui enlève tous les modes de Fourier strictement négatifs (NLS--Szegö cubique), l'équation de Schrödinger quintique focalisante filtrée par le projecteur de Szegö sur la droite (NLS--Szegö quintique) et l'équation de Benjamin--Ono (BO) sur la droite. Comme pour les deux modèles précédents, l'équation de BO peut encore s'écrire sous la forme d'une équation de Schrödinger quadratique filtrée par l
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Szégö projector"

1

de Monvel, Louis Boutet. "Vanishing of the logarithmic trace of generalized Szegö projectors." In Algebraic Analysis of Differential Equations. Springer Japan, 2008. http://dx.doi.org/10.1007/978-4-431-73240-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Christ, Mike. "On the equation and Szegö projection on CR manifolds." In Harmonic Analysis and Partial Differential Equations. Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0086799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!