Academic literature on the topic 'Szemerédi'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Szemerédi.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Szemerédi"
ZHAO, YUFEI. "An arithmetic transference proof of a relative Szemerédi theorem." Mathematical Proceedings of the Cambridge Philosophical Society 156, no. 2 (November 14, 2013): 255–61. http://dx.doi.org/10.1017/s0305004113000662.
Full textKOMLÓS, JÁNOS. "The Blow-up Lemma." Combinatorics, Probability and Computing 8, no. 1-2 (January 1999): 161–76. http://dx.doi.org/10.1017/s0963548398003502.
Full textBERGELSON, VITALY, and INGER J. HÅLAND KNUTSON. "Weak mixing implies weak mixing of higher orders along tempered functions." Ergodic Theory and Dynamical Systems 29, no. 5 (February 26, 2009): 1375–416. http://dx.doi.org/10.1017/s0143385708000862.
Full textRaussen, Martin, and Christian Skau. "Interview with Endre Szemerédi." Notices of the American Mathematical Society 60, no. 02 (February 1, 2013): 1. http://dx.doi.org/10.1090/noti948.
Full textConlon, David, Jacob Fox, and Yufei Zhao. "A relative Szemerédi theorem." Geometric and Functional Analysis 25, no. 3 (March 17, 2015): 733–62. http://dx.doi.org/10.1007/s00039-015-0324-9.
Full textKehoe, Elaine. "Szemerédi Receives 2012 Abel Prize." Notices of the American Mathematical Society 59, no. 06 (June 1, 2012): 1. http://dx.doi.org/10.1090/noti855.
Full textKeevash, Peter, and Richard Mycroft. "A multipartite Hajnal–Szemerédi theorem." Journal of Combinatorial Theory, Series B 114 (September 2015): 187–236. http://dx.doi.org/10.1016/j.jctb.2015.04.003.
Full textJones, Albin L. "On a result of Szemerédi." Journal of Symbolic Logic 73, no. 3 (September 2008): 953–56. http://dx.doi.org/10.2178/jsl/1230396758.
Full textAdhikari, S. D., L. Boza, S. Eliahou, M. P. Revuelta, and M. I. Sanz. "Numerical semigroups of Szemerédi type." Discrete Applied Mathematics 263 (June 2019): 8–13. http://dx.doi.org/10.1016/j.dam.2018.03.023.
Full textHan, Jie, and Yi Zhao. "On multipartite Hajnal–Szemerédi theorems." Discrete Mathematics 313, no. 10 (May 2013): 1119–29. http://dx.doi.org/10.1016/j.disc.2013.02.008.
Full textDissertations / Theses on the topic "Szemerédi"
Zhao, Yufei. "Sparse regularity and relative Szemerédi theorems." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/99060.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 171-179).
We extend various fundamental combinatorial theorems and techniques from the dense setting to the sparse setting. First, we consider Szemerédi regularity lemma, a fundamental tool in extremal combinatorics. The regularity method, in its original form, is effective only for dense graphs. It has been a long standing problem to extend the regularity method to sparse graphs. We solve this problem by proving a so-called "counting lemma," thereby allowing us to apply the regularity method to relatively dense subgraphs of sparse pseudorandom graphs. Next, by extending these ideas to hypergraphs, we obtain a simplification and extension of the key technical ingredient in the proof of the celebrated Green-Tao theorem, which states that there are arbitrarily long arithmetic progressions in the primes. The key step, known as a relative Szemerédi theorem, says that any positive proportion subset of a pseudorandom set of integers contains long arithmetic progressions. We give a simple proof of a strengthening of the relative Szemerédi theorem, showing that a much weaker pseudorandomness condition is sufficient. Finally, we give a short simple proof of a multidimensional Szemerédi theorem in the primes, which states that any positive proportion subset of Pd (where P denotes the primes) contains constellations of any given shape. This has been conjectured by Tao and recently proved by Cook, Magyar, and Titichetrakun and independently by Tao and Ziegler.
by Yufei Zhao.
Ph. D.
Moretti, Junior Nilton Cesar. "Dinâmica, combinatória e ergodicidade." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/154770.
Full textApproved for entry into archive by Elza Mitiko Sato null (elzasato@ibilce.unesp.br) on 2018-07-31T18:13:18Z (GMT) No. of bitstreams: 1 morettijunior_nc_me_sjrp.pdf: 1461434 bytes, checksum: 7a6418b1192346448fc927ec6c6650dc (MD5)
Made available in DSpace on 2018-07-31T18:13:18Z (GMT). No. of bitstreams: 1 morettijunior_nc_me_sjrp.pdf: 1461434 bytes, checksum: 7a6418b1192346448fc927ec6c6650dc (MD5) Previous issue date: 2017-08-30
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Neste trabalho estudamos vários resultados relacionados com sistemas dinâmicos, teoria dos números e combinatória. Em particular, provamos os teoremas de Van Der Waerden, Szemeredi, Koksma e Weyl.
In this work we study several results connected with dynamical systems, number thoery and combinatorics. In particular, we prove Van Der Waerden, Szemer edi, Koksma and Weyl’s theorems.
Beyers, Frederik Johannes Conradie. "The Szemeredi property in noncommutative dynamical systems." Pretoria : [s.n.], 2009. http://upetd.up.ac.za/thesis/available/etd-05242009-145506.
Full textTitichetrakun, Tatchai. "A multidimensional Szemerédi's theorem in the primes." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/58429.
Full textScience, Faculty of
Mathematics, Department of
Graduate
Curado, Manuel. "Structural Similarity: Applications to Object Recognition and Clustering." Doctoral thesis, Universidad de Alicante, 2018. http://hdl.handle.net/10045/98110.
Full textMinisterio de Economía, Industria y Competitividad (Referencia TIN2012-32839 BES-2013-064482)
Beyers, Frederik Johannes Conradie. "The Szemerédi property in noncommutative dynamical systems." Thesis, 2009. http://hdl.handle.net/2263/24940.
Full textThesis (PhD)--University of Pretoria, 2009.
Mathematics and Applied Mathematics
unrestricted
Hladký, Jan. "Szemerédi Regularity Lemma a jeho aplikace v kombinatorice." Master's thesis, 2008. http://www.nusl.cz/ntk/nusl-294535.
Full textPinto, Pedro Miguel dos Santos. "Teorema da estrutura de Furstenberg: demonstração e redução ao nível Www." Master's thesis, 2013. http://hdl.handle.net/10451/10364.
Full textEsta dissertação tem como tema principal apresentar a prova do Teorema da Estrutura de Furstenberg-Zimmer, que tem como consequência o Teorema de Furstenberg e o seu equivalente de Teoria dos Números, o Teorema de Szemerédi. Começamos por verificar casos particulares, de resolução mais simples, onde o Teorema de Furstenberg é válido: os sistemas weak-mixing e os sistemas compactos. Prossegue-se para uma relativização das propriedades anteriores e mostramos que é sempre possível obter uma sequência transfinita crescente de sistemas satisfazendo o Teorema de Furstenberg, culminando em toda a generalidade no Teorema da Estrutura. Numa segunda parte, iremos mostrar que não necessitamos de toda a força do Teorema da Estrutura para conseguirmos concluir o Teorema de Furstenberg: de facto ao nível ordinal www estamos já em condições suficientes para provar o teorema. Concluímos com algumas considerações sobre a construtividade do Teorema da Estrutura e do Teorema de Szemerédi.
The main subject of this dissertation is to present a proof of the Furstenberg-Zimmer Structure Theorem, from which one can obtain Furstenberg's Theorem and its equivalent number-theoretical version that goes by the name of Szemerédi's Theorem. We start by checking simpler particular cases where the Furstenberg's theorem is true, namely for weak-mixing systems and compact systems. We then proceed to a relativization of the previous properties and show that it is always possible to obtain a transfinite sequence of increasing systems satisfying Furstenberg's theorem, culminating in the most general case, the Structure's Theorem. In a second part, we will show that we do not need the full strength of the Structure Theorem in order to obtain Furstenberg's Theorem: at the ordinal level www we are already able to prove the theorem. We conclude with some considerations about constructivity regarding both the Structure's Theorem and Szemerédi's Theorem.
Tarigan, Regina Ayunita, and 譚芮妲. "Szemerédi’s Regularity Lemma and Its Applications." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/k693tt.
Full text國立中央大學
數學系
105
In this dissertation, the Szemerédi’s Regularity Lemma and its application are studied. This lemma is used to partition a large enough graph into almost equal parts so that the number of edges across the parts is fairly random. On the other hand, Roth's Theorem states that there exists an arithmetic progression with length 3 in a subset in integer with positive upper density. We shall see that it can be proved by using triangle removal lemma, which is an application of Szemerédi’s Regularity Lemma.
Zirnstein, Heinrich-Gregor. "Formulating Szemerédi's theorem in terms of ultrafilters." 2012. https://ul.qucosa.de/id/qucosa%3A16816.
Full textBooks on the topic "Szemerédi"
Társulat, Bolyai János Matematikai, ed. An irregular mind: Szemerédi is 70. Berlin: Springer, 2010.
Find full textBárány, Imre, and Jozsef Solymosi. An Irregular Mind: Szemerédi is 70. Springer, 2012.
Find full textAn Ergodic IP Polynomial Szemeredi Theorem (Memoirs of the American Mathematical Society). American Mathematical Society, 2000.
Find full textComparative-Historical Linguistics: Indo-European and Finno-Ugric. Papers in honor of Oswald Szemerényi III. John Benjamins Publishing Company, 1993.
Find full textBook chapters on the topic "Szemerédi"
McCutcheon, Randall. "Two Szemerédi theorems." In Elemental Methods in Ergodic Ramsey Theory, 136–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/bfb0093965.
Full textKarmani, Rajesh K., Gul Agha, Mark S. Squillante, Joel Seiferas, Marian Brezina, Jonathan Hu, Ray Tuminaro, et al. "Ajtai–Komlós–Szemerédi Sorting Network." In Encyclopedia of Parallel Computing, 16. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-09766-4_2379.
Full textHajnal, András. "My Early Encounters With Szemerédi." In Bolyai Society Mathematical Studies, 755–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14444-8_23.
Full textGowers, W. T. "The Mathematics of Endre Szemerédi." In The Abel Prize 2008-2012, 459–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39449-2_25.
Full textHolden, Helge, and Ragni Piene. "Curriculum Vitae for Endre Szemerédi." In The Abel Prize 2008-2012, 507–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39449-2_27.
Full textKeevash, Peter, and Richard Mycroft. "A multipartite Hajnal-Szemerédi theorem." In The Seventh European Conference on Combinatorics, Graph Theory and Applications, 141–46. Pisa: Scuola Normale Superiore, 2013. http://dx.doi.org/10.1007/978-88-7642-475-5_23.
Full textBollobás, Béla, and Vladimir Nikiforov. "An Abstract Szemerédi Regularity Lemma." In Bolyai Society Mathematical Studies, 219–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-85221-6_7.
Full textNasso, Mauro Di, Isaac Goldbring, and Martino Lupini. "Triangle Removal and Szemerédi Regularity." In Nonstandard Methods in Ramsey Theory and Combinatorial Number Theory, 173–80. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17956-4_16.
Full textHolden, Helge, and Ragni Piene. "List of Publications for Endre Szemerédi." In The Abel Prize 2008-2012, 495–506. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39449-2_26.
Full textAustin, Tim. "Ajtai–Szemerédi Theorems over quasirandom groups." In Recent Trends in Combinatorics, 453–84. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24298-9_19.
Full textConference papers on the topic "Szemerédi"
Bavarian, Mohammad, and Peter W. Shor. "Information Causality, Szemerédi-Trotter and Algebraic Variants of CHSH." In ITCS'15: Innovations in Theoretical Computer Science. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2688073.2688112.
Full textShanmugam, Karthikeyan, Alexandras G. Dimakis, Jaime Llorca, and Antonia M. Tulino. "A unified Ruzsa-Szemerédi framework for finite-length coded caching." In 2017 51st Asilomar Conference on Signals, Systems, and Computers. IEEE, 2017. http://dx.doi.org/10.1109/acssc.2017.8335418.
Full textTarigan, Regina Ayunita, and Chun-Yen Shen. "Szemerédi's regularity lemma application on 3-term arithmetic progression." In THE 4TH INDOMS INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATION (IICMA 2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0017419.
Full text