Journal articles on the topic 'T-distributed Stochastic Neighbour Embedding'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'T-distributed Stochastic Neighbour Embedding.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Rice, Iain. "Γ-stochastic neighbour embedding for feed-forward data visualization". Information Visualization 17, № 4 (2017): 306–15. http://dx.doi.org/10.1177/1473871617715212.
Full textSudha, T., and P. Nagendra Kumar. "Performance Analysis of Dimensionality Reduction Techniques in the Context of Clustering." Asian Journal of Computer Science and Technology 8, S3 (2019): 66–71. http://dx.doi.org/10.51983/ajcst-2019.8.s3.2084.
Full textChan, David M., Roshan Rao, Forrest Huang, and John F. Canny. "GPU accelerated t-distributed stochastic neighbor embedding." Journal of Parallel and Distributed Computing 131 (September 2019): 1–13. http://dx.doi.org/10.1016/j.jpdc.2019.04.008.
Full textAbimanyu, Satria, Nurdin Bahtiar, and Eko Adi Sarwoko. "Implementasi Metode Support Vector Machine (SVM) dan t-Distributed Stochastic Neighbor Embedding (t-SNE) untuk Klasifikasi Depresi." JURNAL MASYARAKAT INFORMATIKA 14, no. 2 (2023): 146–58. http://dx.doi.org/10.14710/jmasif.14.2.59513.
Full textValente, Daria, Chiara De Gregorio, Valeria Torti, et al. "Finding Meanings in Low Dimensional Structures: Stochastic Neighbor Embedding Applied to the Analysis of Indri indri Vocal Repertoire." Animals 9, no. 5 (2019): 243. http://dx.doi.org/10.3390/ani9050243.
Full textZhang, Haili, Pu Wang, Xuejin Gao, Yongsheng Qi, and Huihui Gao. "Process Data Visualization Using Bikernel t-Distributed Stochastic Neighbor Embedding." Industrial & Engineering Chemistry Research 59, no. 44 (2020): 19623–32. http://dx.doi.org/10.1021/acs.iecr.0c03333.
Full textWang, Jing, Xiaobin Cheng, Xun Wang, et al. "On the solidification of the manifold of the t-distributed stochastic neighbour embedding for condition classification of machine tools." Engineering Research Express 3, no. 4 (2021): 045031. http://dx.doi.org/10.1088/2631-8695/ac37f0.
Full textKim, Kipoong, and Choongrak Kim. "A review on the t-distributed stochastic neighbors embedding." Korean Journal of Applied Statistics 36, no. 2 (2023): 167–73. http://dx.doi.org/10.5351/kjas.2023.36.2.167.
Full textAbbas, Ahmed Khudhair, Adil Ibrahim Khalil, and Sameera A. Abdulkader. "Social Touch Recognition Based on Support Vector Machine and T-Distributed Stochastic Neighbour Embedding as Pre-processing." IOP Conference Series: Materials Science and Engineering 1076, no. 1 (2021): 012042. http://dx.doi.org/10.1088/1757-899x/1076/1/012042.
Full textUrrutia, Robin, Diego Espejo, Natalia Evens, et al. "Clustering Methods for Vibro-Acoustic Sensing Features as a Potential Approach to Tissue Characterisation in Robot-Assisted Interventions." Sensors 23, no. 23 (2023): 9297. http://dx.doi.org/10.3390/s23239297.
Full textShi, Sha, Yefei Xu, Xiaoyang Xu, Xiaofan Mo, and Jun Ding. "A Preprocessing Manifold Learning Strategy Based on t-Distributed Stochastic Neighbor Embedding." Entropy 25, no. 7 (2023): 1065. http://dx.doi.org/10.3390/e25071065.
Full textMa, Xiaobo, Yuchen Zhang, Fengshan Zhang, and Hongbin Liu. "Monitoring of papermaking wastewater treatment processes using t-distributed stochastic neighbor embedding." Journal of Environmental Chemical Engineering 9, no. 6 (2021): 106559. http://dx.doi.org/10.1016/j.jece.2021.106559.
Full textCieslak, Matthew C., Ann M. Castelfranco, Vittoria Roncalli, Petra H. Lenz, and Daniel K. Hartline. "t-Distributed Stochastic Neighbor Embedding (t-SNE): A tool for eco-physiological transcriptomic analysis." Marine Genomics 51 (June 2020): 100723. http://dx.doi.org/10.1016/j.margen.2019.100723.
Full textZhu, Ye, and Kai Ming Ting. "Improving the Effectiveness and Efficiency of Stochastic Neighbour Embedding with Isolation Kernel." Journal of Artificial Intelligence Research 71 (August 2, 2021): 667–95. http://dx.doi.org/10.1613/jair.1.12904.
Full textVyšata, Oldřich, Ondřej Ťupa, Aleš Procházka, et al. "Classification of Ataxic Gait." Sensors 21, no. 16 (2021): 5576. http://dx.doi.org/10.3390/s21165576.
Full textHany, Maha, Shaheera Rashwan, and Neveen M. Abdelmotilib. "A Machine Learning Method for Prediction of Yogurt Quality and Consumers Preferencesusing Sensory Attributes and Image Processing Techniques." Machine Learning and Applications: An International Journal 10, no. 1 (2023): 1–7. http://dx.doi.org/10.5121/mlaij.2023.10101.
Full textBarnard, A. S., and G. Opletal. "Predicting structure/property relationships in multi-dimensional nanoparticle data using t-distributed stochastic neighbour embedding and machine learning." Nanoscale 11, no. 48 (2019): 23165–72. http://dx.doi.org/10.1039/c9nr03940f.
Full textVerma, Meetu, Gal Matijevič, Carsten Denker та ін. "Classification of High-resolution Solar Hα Spectra Using t-distributed Stochastic Neighbor Embedding". Astrophysical Journal 907, № 1 (2021): 54. http://dx.doi.org/10.3847/1538-4357/abcd95.
Full textWang, Zhi‐Lei, Toshio Ogawa, and Yoshitaka Adachi. "Persistent‐Homology‐Based Microstructural Optimization of Materials Using t‐Distributed Stochastic Neighbor Embedding." Advanced Theory and Simulations 3, no. 7 (2020): 2000040. http://dx.doi.org/10.1002/adts.202000040.
Full textKanaan-Izquierdo, Samir, Andrey Ziyatdinov, Maria Araceli Burgueño, and Alexandre Perera-Lluna. "Multiview: a software package for multiview pattern recognition methods." Bioinformatics 35, no. 16 (2018): 2877–79. http://dx.doi.org/10.1093/bioinformatics/bty1039.
Full textLu, Weipeng, and Xuefeng Yan. "Industrial process data visualization based on a deep enhanced t-distributed stochastic neighbor embedding neural network." Assembly Automation 42, no. 2 (2022): 268–77. http://dx.doi.org/10.1108/aa-09-2021-0123.
Full textRodosthenous, Theodoulos, Vahid Shahrezaei, and Marina Evangelou. "Multi-view data visualisation via manifold learning." PeerJ Computer Science 10 (May 24, 2024): e1993. http://dx.doi.org/10.7717/peerj-cs.1993.
Full textKoolstra, Kirsten, Peter Börnert, Boudewijn P. F. Lelieveldt, Andrew Webb, and Oleh Dzyubachyk. "Stochastic neighbor embedding as a tool for visualizing the encoding capability of magnetic resonance fingerprinting dictionaries." Magnetic Resonance Materials in Physics, Biology and Medicine 35, no. 2 (2021): 223–34. http://dx.doi.org/10.1007/s10334-021-00963-8.
Full textAli, Sarwan, and Murray Patterson. "Improving ISOMAP Efficiency with RKS: A Comparative Study with t-Distributed Stochastic Neighbor Embedding on Protein Sequences." J 6, no. 4 (2023): 579–91. http://dx.doi.org/10.3390/j6040038.
Full textLeon-Medina, Jersson X., Maribel Anaya, Francesc Pozo, and Diego Tibaduiza. "Nonlinear Feature Extraction Through Manifold Learning in an Electronic Tongue Classification Task." Sensors 20, no. 17 (2020): 4834. http://dx.doi.org/10.3390/s20174834.
Full textMr., K. Anguraju. "AN INTELLIGENT SELF-ORGANIZING LSTM MODEL FOR COMORBIDITY ASSESSMENT OF PERIPHERAL ARTERY DISEASE METHODS." International Journal of Advances in Engineering & Scientific Research 12, no. 1 (2025): 138–50. https://doi.org/10.5281/zenodo.14928824.
Full textGao, Lianru, Daixin Gu, Lina Zhuang, Jinchang Ren, Dong Yang, and Bing Zhang. "Combining t-Distributed Stochastic Neighbor Embedding With Convolutional Neural Networks for Hyperspectral Image Classification." IEEE Geoscience and Remote Sensing Letters 17, no. 8 (2020): 1368–72. http://dx.doi.org/10.1109/lgrs.2019.2945122.
Full textZhou, Hongyu, Feng Wang, and Peng Tao. "t-Distributed Stochastic Neighbor Embedding Method with the Least Information Loss for Macromolecular Simulations." Journal of Chemical Theory and Computation 14, no. 11 (2018): 5499–510. http://dx.doi.org/10.1021/acs.jctc.8b00652.
Full textZhu, Wenbo, Zachary T. Webb, Kaitian Mao, and José Romagnoli. "A Deep Learning Approach for Process Data Visualization Using t-Distributed Stochastic Neighbor Embedding." Industrial & Engineering Chemistry Research 58, no. 22 (2019): 9564–75. http://dx.doi.org/10.1021/acs.iecr.9b00975.
Full textCheng, Minjie, Dixin Luo, and Hongteng Xu. "WatE: A Wasserstein t-distributed Embedding Method for Information-enriched Graph Visualization." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 15 (2025): 16010–18. https://doi.org/10.1609/aaai.v39i15.33758.
Full textGajjar, Pranshav, Naishadh Mehta, and Pooja Shah. "Quadruplet loss and SqueezeNets for Covid-19 detection from Chest-X ray." Computer Science Journal of Moldova 30, no. 2 (89) (2022): 214–22. http://dx.doi.org/10.56415/csjm.v30.12.
Full textFang, Xian, Zhixin Tie, Yinan Guan, and Shanshan Rao. "Quasi-cluster centers clustering algorithm based on potential entropy and t-distributed stochastic neighbor embedding." Soft Computing 23, no. 14 (2018): 5645–57. http://dx.doi.org/10.1007/s00500-018-3221-y.
Full textTu, Deyu, Jinde Zheng, Zhanwei Jiang, and Haiyang Pan. "Multiscale Distribution Entropy and t-Distributed Stochastic Neighbor Embedding-Based Fault Diagnosis of Rolling Bearings." Entropy 20, no. 5 (2018): 360. http://dx.doi.org/10.3390/e20050360.
Full textTadjer, Amine, Reider B. Bratvold, and Remus G. Hanea. "Efficient Dimensionality Reduction Methods in Reservoir History Matching." Energies 14, no. 11 (2021): 3137. http://dx.doi.org/10.3390/en14113137.
Full textAli, Mohsin, Jitendra Choudhary, and Tanmay Kasbe. "A hybrid model for data visualization using linear algebra methods and machine learning algorithm." Indonesian Journal of Electrical Engineering and Computer Science 33, no. 1 (2024): 463. http://dx.doi.org/10.11591/ijeecs.v33.i1.pp463-475.
Full textAli, Mohsin, Jitendra Choudhary, and Tanmay Kasbe. "A hybrid model for data visualization using linear algebramethods and machine learning algorithm." Indonesian Journal of Electrical Engineering and Computer Science 33, no. 1 (2024): 463–75. https://doi.org/10.11591/ijeecs.v33.i1.pp463-475.
Full textWang, Xiang, and Han Jiang. "Gearbox Fault Diagnosis Based on Refined Time-Shift Multiscale Reverse Dispersion Entropy and Optimised Support Vector Machine." Machines 11, no. 6 (2023): 646. http://dx.doi.org/10.3390/machines11060646.
Full textNigro, Hector. "Reducción de dimensionalidad en grandes volúmenes de datos usando PCA y t-SNE." Revista Ingeniería, Matemáticas y Ciencias de la Información 12, no. 23 (2025): 139–46. https://doi.org/10.21017/rimci.1133.
Full textSai, Kalyana Pranitha Buddiga. "Navigating the Complexity of Big Data: Exploring Dimensionality Reduction Methods." Journal of Scientific and Engineering Research 7, no. 8 (2020): 220–23. https://doi.org/10.5281/zenodo.11216323.
Full textAcuff, Nicole V., and Joel Linden. "Using Visualization of t-Distributed Stochastic Neighbor Embedding To Identify Immune Cell Subsets in Mouse Tumors." Journal of Immunology 198, no. 11 (2017): 4539–46. http://dx.doi.org/10.4049/jimmunol.1602077.
Full textDUTAĞACI, HELİN. "Using t-distributed stochastic neighbor embedding for visualization and segmentation of 3D point clouds of plants." Turkish Journal of Electrical Engineering and Computer Sciences 31, no. 5 (2023): 792–813. http://dx.doi.org/10.55730/1300-0632.4018.
Full textKuhaneswaran, Banujan, Abishethvarman Vadivel, Ashansa Wijeratne, et al. "Exploring the Educational Landscape of ChatGPT: A Topic Modeling Approach on Twitter Data." Sri Lanka Journal of Social Sciences and Humanities 4, no. 1 (2024): 1–12. http://dx.doi.org/10.4038/sljssh.v4i1.114.
Full textBruni Prenestino, Francesco, Enrico Barbierato, and Alice Gatti. "Robust Synthetic Data Generation for Sequential Financial Models Using Hybrid Variational Autoencoder–Markov Chain Monte Carlo Architectures." Future Internet 17, no. 2 (2025): 95. https://doi.org/10.3390/fi17020095.
Full textLiu, Honghua, Jing Yang, Ming Ye, et al. "Using t-distributed Stochastic Neighbor Embedding (t-SNE) for cluster analysis and spatial zone delineation of groundwater geochemistry data." Journal of Hydrology 597 (June 2021): 126146. http://dx.doi.org/10.1016/j.jhydrol.2021.126146.
Full textMichalak, Krzysztof. "Visualizing Combinatorial Search Spaces with Low-Dimensional Euclidean Embedding." ACM SIGEVOlution 15, no. 4 (2022): 1–8. http://dx.doi.org/10.1145/3584367.3584369.
Full textPatel, Tulsi, Mark W. Jones, and Thomas Redfern. "Manifold Explorer: Satellite Image Labelling and Clustering Tool with Using Deep Convolutional Autoencoders." Algorithms 16, no. 10 (2023): 469. http://dx.doi.org/10.3390/a16100469.
Full textTunvirachaisakul, Chavit, Thitiporn Supasitthumrong, Sookjareon Tangwongchai, et al. "Characteristics of Mild Cognitive Impairment Using the Thai Version of the Consortium to Establish a Registry for Alzheimer’s Disease Tests: A Multivariate and Machine Learning Study." Dementia and Geriatric Cognitive Disorders 45, no. 1-2 (2018): 38–48. http://dx.doi.org/10.1159/000487232.
Full textLevitas, Joseph, Konstantin Yavilberg, Oleg Korol, and Genadi Man. "Prediction of Auto Insurance Risk Based on t-SNE Dimensionality Reduction." Advances in Artificial Intelligence and Machine Learning 02, no. 04 (2022): 567–79. http://dx.doi.org/10.54364/aaiml.2022.1139.
Full textTao, Shiyong, Weirong Chen, Shuna Jiang, Xinyu Liu, and Jiaxi Yu. "INTELLIGENT HEALTH STATUS DETECTION METHOD FOR LOCOMOTIVE FUEL CELL BASED ON DATA-DRIVEN TECHNIQUES." DYNA 96, no. 6 (2021): 633–39. http://dx.doi.org/10.6036/10290.
Full textWu, Hao, Dahai Dai, and Xuesong Wang. "A Novel Radar HRRP Recognition Method with Accelerated T-Distributed Stochastic Neighbor Embedding and Density-Based Clustering." Sensors 19, no. 23 (2019): 5112. http://dx.doi.org/10.3390/s19235112.
Full text