Academic literature on the topic 'Tabular data'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tabular data.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Tabular data"
Altman, Naomi, and Martin Krzywinski. "Tabular data." Nature Methods 14, no. 4 (March 30, 2017): 329–30. http://dx.doi.org/10.1038/nmeth.4239.
Full textEken, Süleyman, Ahmet Sayar, and Kürşat Topçuoğlu. "AutoTest: Automation to Test Tabular Data Quality." International Journal of Computer and Electrical Engineering 6, no. 4 (2014): 365–68. http://dx.doi.org/10.7763/ijcee.2014.v6.854.
Full textAltman, Naomi, and Martin Krzywinski. "Author Correction: Tabular data." Nature Methods 16, no. 7 (June 12, 2019): 658. http://dx.doi.org/10.1038/s41592-019-0474-z.
Full textBadaro, Gilbert, and Paolo Papotti. "Transformers for tabular data representation." Proceedings of the VLDB Endowment 15, no. 12 (August 2022): 3746–49. http://dx.doi.org/10.14778/3554821.3554890.
Full textKelly, James P., Bruce L. Golden, Arjang A. Assad, and Edward K. Baker. "Controlled Rounding of Tabular Data." Operations Research 38, no. 5 (October 1990): 760–72. http://dx.doi.org/10.1287/opre.38.5.760.
Full textMenon, Anil, and Nadhamuni Nerella. "Communicating Tabular Data Using ORACLE." Pharmaceutical Development and Technology 5, no. 3 (January 2000): 423–31. http://dx.doi.org/10.1081/pdt-100100559.
Full textHumpal, John J. "Numbers, Statistics, and Tabular Data." Radiology 218, no. 1 (January 2001): 12. http://dx.doi.org/10.1148/radiology.218.1.r01ja6812.
Full textMORRISON, PHILIP S. "Symbolic Representation of Tabular Data." New Zealand Journal of Geography 79, no. 1 (May 15, 2008): 11–18. http://dx.doi.org/10.1111/j.0028-8292.1985.tb00199.x.
Full textGonzalez, Joe Fred, and Lawrence H. Cox. "Software for tabular data protection." Statistics in Medicine 24, no. 4 (2005): 659–69. http://dx.doi.org/10.1002/sim.2043.
Full textC., Keerthy, and Sabitha S. "Privacy Preserved Data Publishing Techniques for Tabular Data." International Journal of Computer Applications 151, no. 9 (October 17, 2016): 1–6. http://dx.doi.org/10.5120/ijca2016911874.
Full textDissertations / Theses on the topic "Tabular data"
Xu, Lei S. M. Massachusetts Institute of Technology. "Synthesizing tabular data using conditional GAN." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/128349.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 89-93).
In data science, the ability to model the distribution of rows in tabular data and generate realistic synthetic data enables various important applications including data compression, data disclosure, and privacy-preserving machine learning. However, because tabular data usually contains a mix of discrete and continuous columns, building such a model is a non-trivial task. Continuous columns may have multiple modes, while discrete columns are sometimes imbalanced, making modeling difficult. To address this problem, I took two major steps. (1) I designed SDGym, a thorough benchmark, to compare existing models, identify different properties of tabular data and analyze how these properties challenge different models. Our experimental results show that statistical models, such as Bayesian networks, that are constrained to a fixed family of available distributions cannot model tabular data effectively, especially when both continuous and discrete columns are included. Recently proposed deep generative models are capable of modeling more sophisticated distributions, but cannot outperform Bayesian network models in practice, because the network structure and learning procedure are not optimized for tabular data which may contain non-Gaussian continuous columns and imbalanced discrete columns. (2) To address these problems, I designed CTGAN, which uses a conditional generative adversarial network to address the challenges in modeling tabular data. Because CTGAN uses reversible data transformations and is trained by re-sampling the data, it can address common challenges in synthetic data generation. I evaluated CTGAN on the benchmark and showed that it consistently and significantly outperforms existing statistical and deep learning models.
by Lei Xu.
S.M.
S.M. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Liu, Zhicheng. "Network-based visual analysis of tabular data." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43687.
Full textCaspár, Sophia. "Visualization of tabular data on mobile devices." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-68036.
Full textBraunschweig, Katrin. "Recovering the Semantics of Tabular Web Data." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-184502.
Full textCappuzzo, Riccardo. "Deep learning models for tabular data curation." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS047.
Full textData retention is a pervasive and far-reaching topic, affecting everything from academia to industry. Current solutions rely on manual work by domain users, but they are not adequate. We are investigating how to apply deep learning to tabular data curation. We focus our work on developing unsupervised data curation systems and designing curation systems that intrinsically model categorical values in their raw form. We first implement EmbDI to generate embeddings for tabular data, and address the tasks of entity resolution and schema matching. We then turn to the data imputation problem using graphical neural networks in a multi-task learning framework called GRIMP
Baxter, Jay. "BayesDB : querying the probable implications of tabular data." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/91451.
Full text43
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 93-95).
BayesDB, a Bayesian database table, lets users query the probable implications of their tabular data as easily as an SQL database lets them query the data itself. Using the built-in Bayesian Query Language (BQL), users with little statistics knowledge can solve basic data science problems, such as detecting predictive relationships between variables, inferring missing values, simulating probable observations, and identifying statistically similar database entries. BayesDB is suitable for analyzing complex, heterogeneous data tables with no preprocessing or parameter adjustment required. This generality rests on the model independence provided by BQL, analogous to the physical data independence provided by the relational model. SQL enables data filtering and aggregation tasks to be described independently of the physical layout of data in memory and on disk. Non-experts rely on generic indexing strategies for good-enough performance, while experts customize schemes and indices for performance-sensitive applications. Analogously, BQL enables analysis tasks to be described independently of the models used to solve them. Non-statisticians can rely on a general-purpose modeling method called CrossCat to build models that are good enough for a broad class of applications, while experts can customize the schemes and models when needed. This thesis defines BQL, describes an implementation of BayesDB, quantitatively characterizes its scalability and performance, and illustrates its efficacy on real-world data analysis problems in the areas of healthcare economics, statistical survey data analysis, web analytics, and predictive policing.
by Jay Baxter.
M. Eng.
Jiang, Ji Chu. "High Precision Deep Learning-Based Tabular Data Extraction." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/41699.
Full textRahman, Md Anisur. "Tabular Representation of Schema Mappings: Semantics and Algorithms." Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20032.
Full textBaena, Mirabete Daniel. "Exact and heuristic methods for statistical tabular data protection." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/456809.
Full textUn dels principals objectius dels Instituts Nacionals d'Estadística (INEs) és proporcionar, als ciutadans o als investigadors, una gran quantitat de dades estadístiques fiables i precises. Al mateix temps els INEs deuen garantir la confidencialitat estadística i que cap dada personal pot ser obtinguda gràcies a les dades estadístiques disseminades. La disciplina Control de revelació estadística (en anglès Statistical Disclosure Control, SDC) s'ocupa de garantir que cap dada individual pot derivar-se dels outputs de estadístics publicats però intentant al mateix temps mantenir el màxim possible de riquesa de les dades. Els INEs treballen amb dos tipus de dades: microdades i dades tabulars. Les microdades son arxius amb registres individuals de persones o empreses amb un conjunt d'atributs. Per exemple, el censos nacional recull atributs tals com l'edat, sexe, adreça o salari entre d'altres. Les dades tabulars són dades agregades obtingudes a partir del creuament d’un o més atributs o variables categòriques dels fitxers de microdades. Varis mètodes CRE són disponibles per evitar la revelació estadística en fitxers de microdades o dades tabulars. Aquesta tesi es centra en la protecció de dades tabulars tot i que la recerca duta a terme pot ser aplicada també a altres tipus de problemes. Els mètodes CTA (en anglès Controlled Tabular Adjustment) i CSP (en anglès Cell Suppression Problem) ha centrat la major part de la recerca feta en el camp de protecció de dades tabulars. Tots dos mètodes formulen problemes MILP (Mixed Integer Linear Programming problems) difícils de solucionar en taules de mida moderada. Fins i tot trobar solucions inicials factibles pot resultar molt difícil. Donat el fet que molts usuaris finals donen prioritat a tenir solucions ràpides i bones tot i que aquestes no siguin les òptimes, la primera contribució de la tesis presenta una millora en una coneguda i exitosa heurística per trobar solucions factibles de MILPs, anomenada feasibility pump. La nova aproximació, basada en el càlcul de centres analítics, s'anomena Analytic Center Feasibility Pump. La segona contribució consisteix en l'aplicació de la heurística fix-and-relax (FR) al mètode CTA. FR (sol o en combinació amb d'altres heurístiques) es mostra com a competitiu davant CPLEX branch-and-cut en termes de trobar ràpidament solucions factibles o bons upper bounds. La darrera contribució d’aquesta tesi tracta sobre el problema general de descomposició de Benders, aportant una millora amb l'aplicació de tècniques d’estabilització. Presentem un mètode anomenat stabilized Benders decomposition que es centra en trobar noves solucions properes a punts considerats prèviament com a bons. Aquesta aproximació ha estat eficientment aplicada al problema CSP, obtenint molt bons resultats en dades tabulars reals, millorant altres alternatives conegudes del mètode CSP. Les dues primeres contribucions ja han estat publicades en revistes indexades (Operations Research Letters and Computers and Operations Research). Actualment estem treballant en la publicació de la tercera contribució i serà en breu enviada a revisar.
Karlsson, Anton, and Torbjörn Sjöberg. "Synthesis of Tabular Financial Data using Generative Adversarial Networks." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273633.
Full textDigitaliseringen har fört med sig stora mängder tillgänglig kunddata och skapat möjligheter för datadriven innovation. För att skydda kundernas integritet måste dock uppgifterna hanteras varsamt. Generativa Motstidande Nätverk (GANs) är en ny lovande utveckling inom generativ modellering. De kan användas till att syntetisera data som underlättar dataanalys samt bevarar kundernas integritet. Tidigare forskning på GANs har visat lovande resultat på bilddata. I det här examensarbetet undersöker vi gångbarheten av GANs inom finansbranchen. Vi undersöker två framstående GANs designade för att syntetisera tabelldata, TGAN och CTGAN, samt en enklare GAN modell som vi kallar för WGAN. Ett omfattande ramverk för att utvärdera syntetiska dataset utvecklas för att möjliggöra jämförelse mellan olika GANs. Resultaten indikerar att GANs klarar av att syntetisera högkvalitativa dataset som bevarar de statistiska egenskaperna hos det underliggande datat, vilket möjliggör en gångbar och reproducerbar efterföljande analys. Alla modellerna som testades uppvisade dock problem med att återskapa numerisk data.
Books on the topic "Tabular data"
Ye, Andre, and Zian Wang. Modern Deep Learning for Tabular Data. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-8692-0.
Full textGilbert, G. Nigel. Analyzing tabular data: Loglinear and logistic models for social researchers. London: UCL Press, 1993.
Find full textUnited States. Bureau of Mines., ed. MULSIM/PC: A personal-computer-based structural analysis program for mine design in deep tabular deposits. Washington, D.C. (810 7th St., N.W., Washington 20241-0001): U.S. Dept. of the Interior, Bureau of Mines, 1992.
Find full textUnited States. Bureau of Mines., ed. MULSIM/PC: A personal-computer-based structural analysis program for mine design in deep tabular deposits. Washington, D.C. (810 7th St., N.W., Washington 20241-0001): U.S. Dept. of the Interior, Bureau of Mines, 1992.
Find full textDonato, D. A. MULSIM/PC: A personal computer-based structural analysis program for mine design in deep tabular deposits. Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1992.
Find full textSpamer, Earle E. Geology of the Grand Canyon: A guide and index to published graphic and tabular data (excluding paleontology). Boulder, Colo: Geological Society of America, 1990.
Find full textB, Taylor Richard. GS MRDS: A system based on the data fields used in the national MRDS system but using dBASE III and a microcomputer (IBM PC) or compatible) for organizing data on mineral resource occurrences and providing tabular and graphic output. Denver, Colo: U.S. Dept. of the Interior, Geological Survey, 1986.
Find full textB, Taylor Richard. GS MRDS: A system based on the data fields used in the national MRDS system but using dBASE III and a microcomputer (IBM PC) or compatible) for organizing data on mineral resource occurrences and providing tabular and graphic output. Denver, Colo: U.S. Dept. of the Interior, Geological Survey, 1986.
Find full textI, Selner G., Johnson Bruce R, and Geological Survey (U.S.), eds. GS MRDS: A system based on the data fields used in the national MRDS system but using dBASE III and a microcomputer (IBM PC) or compatible) for organizing data on mineral resource occurrences and providing tabular and graphic output. Denver, Colo: U.S. Dept. of the Interior, Geological Survey, 1986.
Find full textBook chapters on the topic "Tabular data"
Stowell, Sarah. "Tabular Data." In Using R for Statistics, 73–86. Berkeley, CA: Apress, 2014. http://dx.doi.org/10.1007/978-1-4842-0139-8_6.
Full textDomingo-Ferrer, Josep. "Tabular Data." In Encyclopedia of Database Systems, 1. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4899-7993-3_1493-2.
Full textWillenborg, Leon, and Ton de Waal. "Tabular Data." In Statistical Disclosure Control in Practice, 87–111. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-4028-0_6.
Full textDalgaard, Peter. "Tabular data." In Statistics and Computing, 145–54. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-79054-1_8.
Full textDomingo-Ferrer, Josep. "Tabular Data." In Encyclopedia of Database Systems, 2908. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-39940-9_1493.
Full textDarrin, Speegle, and Clair Bryan. "Tabular Data." In Probability, Statistics, and Data, 335–70. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003004899-10.
Full textDomingo-Ferrer, Josep. "Tabular Data." In Encyclopedia of Database Systems, 3874. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4614-8265-9_1493.
Full textKeydana, Sigrid. "Tabular Data." In Deep Learning and Scientific Computing with R torch, 201–18. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003275923-20.
Full textGilbert, Nigel. "Modelling mobility and change." In Analyzing Tabular Data, 82–100. London: Routledge, 2022. http://dx.doi.org/10.4324/9781003259701-7.
Full textGilbert, Nigel. "Choosing and fitting models." In Analyzing Tabular Data, 66–81. London: Routledge, 2022. http://dx.doi.org/10.4324/9781003259701-6.
Full textConference papers on the topic "Tabular data"
Wang, Tengyun, Jibing Wu, Kaiming Xiao, Ningchao Ge, Hang Zhang, Tao Qiu, and Yifan Zeng. "Enhancing Tabular Data Generation through Data and Knowledge Dual-Driven Approaches." In 2024 10th International Conference on Big Data and Information Analytics (BigDIA), 140–45. IEEE, 2024. https://doi.org/10.1109/bigdia63733.2024.10808817.
Full textWen, Yizhu, Yiwei Wang, Kai Yi, Jing Ke, and Yiqing Shen. "Diffimpute: Tabular Data Imputation with Denoising Diffusion Probabilistic Model." In 2024 IEEE International Conference on Multimedia and Expo (ICME), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icme57554.2024.10687685.
Full textBonnier, Thomas. "Revisiting Multimodal Transformers for Tabular Data with Text Fields." In Findings of the Association for Computational Linguistics ACL 2024, 1481–500. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.findings-acl.87.
Full textYu, Na, Ke Xu, Kaixuan Chen, Shunyu Liu, Tongya Zheng, and Mingli Song. "Multi-Channel Graph Fusion Representation for Tabular Data Imputation." In 2024 International Joint Conference on Neural Networks (IJCNN), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10651425.
Full textApellaniz, Patricia A., Juan Parras, and Santiago Zazo. "An Improved Tabular Data Generator with VAE-GMM Integration." In 2024 32nd European Signal Processing Conference (EUSIPCO), 1886–90. IEEE, 2024. http://dx.doi.org/10.23919/eusipco63174.2024.10715230.
Full textLin, Tong, Jason Yan, David Jurgens, and Sabina J. Tomkins. "Tab2Text - A framework for deep learning with tabular data." In Findings of the Association for Computational Linguistics: EMNLP 2024, 12925–35. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.findings-emnlp.756.
Full textSukhobok, Dina, Nikolay Nikolov, and Dumitru Roman. "Tabular Data Anomaly Patterns." In 2017 International Conference on Big Data Innovations and Applications (Innovate-Data). IEEE, 2017. http://dx.doi.org/10.1109/innovate-data.2017.10.
Full textZhu, Yujin, Zilong Zhao, Robert Birke, and Lydia Y. Chen. "Permutation-Invariant Tabular Data Synthesis." In 2022 IEEE International Conference on Big Data (Big Data). IEEE, 2022. http://dx.doi.org/10.1109/bigdata55660.2022.10020639.
Full textClausner, Christian, Justin Hayes, and Apostolos Antonacopoulos. "Crowdsourcing Historical Tabular Data." In the 5th International Workshop. New York, New York, USA: ACM Press, 2019. http://dx.doi.org/10.1145/3352631.3352643.
Full textTop, J. "Adding semantics to tabular agrifood dataAdding semantics to tabular agrifood data." In Scientific Symposium FAIR Data Sciences for Green Life Sciences. Wageningen University & Research, 2018. http://dx.doi.org/10.18174/fairdata2018.16285.
Full textReports on the topic "Tabular data"
Garton, Timothy. Data enrichment and enhanced accessibility of waterborne commerce numerical data : spatially depicting the National Waterway Network. Engineer Research and Development Center (U.S.), December 2020. http://dx.doi.org/10.21079/11681/39223.
Full textHazen, T. C. Operations Support of Phase 2 Integrated Demonstration In Situ Bioremediation. Volume 2, Final report: Data in tabular form, Disks 2,3,4. Office of Scientific and Technical Information (OSTI), September 1993. http://dx.doi.org/10.2172/10161904.
Full textHazen, T. C. Operations Support of Phase 2 Integrated Demonstration In Situ Bioremediation. Volume 3, Final report: Data in graphical form, Disks 1,2,3,4; Averaged data in tabular form, Disks 1,2. Office of Scientific and Technical Information (OSTI), September 1993. http://dx.doi.org/10.2172/10161897.
Full textHazen, T. C. Operations Support of Phase 2 Integrated Demonstration In Situ Bioremediation. Volume 4, Final report: Averaged data in tabular form, Disks 3,4; Averaged data in graphical form, Disks 1,2,3,4. Office of Scientific and Technical Information (OSTI), September 1993. http://dx.doi.org/10.2172/10161901.
Full textHazen, T. C. Operations Support of Phase 2 Integrated Demonstration In Situ Bioremediation. Volume 1, Final report: Final report text data in tabular form, Disk 1. Office of Scientific and Technical Information (OSTI), September 1993. http://dx.doi.org/10.2172/10161907.
Full textLeis, Flamberg, and Rose. BB78ES8 Vintage Line Pipe Properties via Battelle's Archives. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), October 2008. http://dx.doi.org/10.55274/r0011082.
Full textKokurina, O., and A. Burov. Analytical report on the results of an empirical study of the characteristics and level of sociopolitical stability of student youth as a factor of sustainable development of the Russian statehood in the context of current global challenges. SIB-Expertise, December 2022. http://dx.doi.org/10.12731/er0623.06122022.
Full textCasper, Gary, Stefanie Nadeau, and Thomas Parr. Acoustic amphibian monitoring, 2019 data summary: Isle Royale National Park. National Park Service, December 2022. http://dx.doi.org/10.36967/2295506.
Full textCasper, Gary, Stefanie Nadeau, and Thomas Parr. Acoustic amphibian monitoring, 2019 data summary: Sleeping Bear Dunes National Lakeshore. National Park Service, December 2022. http://dx.doi.org/10.36967/2295512.
Full textCasper, Gary, Stefanie Nadeau, and Thomas Parr. Acoustic amphibian monitoring, 2019 data summary: Pictured Rocks National Lakeshore. National Park Service, December 2022. http://dx.doi.org/10.36967/2295509.
Full text