Academic literature on the topic 'Tailored Fibre Placement'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tailored Fibre Placement.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Tailored Fibre Placement"

1

Crothers, P. J., K. Drechsler, D. Feltin, I. Herszberg, and T. Kruckenberg. "Tailored fibre placement to minimise stress concentrations." Composites Part A: Applied Science and Manufacturing 28, no. 7 (1997): 619–25. http://dx.doi.org/10.1016/s1359-835x(97)00022-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

El-Dessouky, H. M., M. N. Saleh, M. Gautam, G. Han, R. J. Scaife, and P. Potluri. "Tailored fibre placement of commingled carbon-thermoplastic fibres for notch-insensitive composites." Composite Structures 214 (April 2019): 348–58. http://dx.doi.org/10.1016/j.compstruct.2019.02.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mattheij, P., K. Gliesche, and D. Feltin. "3D reinforced stitched carbon/epoxy laminates made by tailored fibre placement." Composites Part A: Applied Science and Manufacturing 31, no. 6 (2000): 571–81. http://dx.doi.org/10.1016/s1359-835x(99)00096-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lehrecke, August, Cody Tucker, Xiliu Yang, Piotr Baszynski, and Hanaa Dahy. "Tailored Lace: Moldless Fabrication of 3D Bio-Composite Structures through an Integrative Design and Fabrication Process." Applied Sciences 11, no. 22 (2021): 10989. http://dx.doi.org/10.3390/app112210989.

Full text
Abstract:
This research demonstrates an integrative computational design and fabrication workflow for the production of surface-active fibre composites, which uses natural fibres, revitalises a traditional craft, and avoids the use of costly molds. Fibre-reinforced polymers (FRPs) are highly tunable building materials, which gain efficiency from fabrication techniques enabling controlled fibre direction and placement in tune with load-bearing requirements. These techniques have evolved closely with industrial textile processes. However, increased focus on automation within FRP fabrication processes have overlooked potential key benefits presented by some lesser-known traditional techniques of fibre arrangement. This research explores the process of traditional bobbin lace-making and applies it in a computer-aided design and fabrication process of a small-scale structural demonstrator in the form of a chair. The research exposes qualities that can expand the design space of FRPs, as well as speculates about the potential automation of the process. In addition, Natural Fibre-Reinforced Polymers (NFRP) are investigated as a sustainable and human-friendly alternative to more popular carbon and glass FRPs.
APA, Harvard, Vancouver, ISO, and other styles
5

Spickenheuer, A., M. Schulz, K. Gliesche, and G. Heinrich. "Using tailored fibre placement technology for stress adapted design of composite structures." Plastics, Rubber and Composites 37, no. 5 (2008): 227–32. http://dx.doi.org/10.1179/174328908x309448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wright, Tom, Thomas Bechtold, Alicia Bernhard, Avinash P. Manian, and Manuel Scheiderbauer. "Tailored fibre placement of carbon fibre rovings for reinforced polypropylene composite part 1: PP infusion of carbon reinforcement." Composites Part B: Engineering 162 (April 2019): 703–11. http://dx.doi.org/10.1016/j.compositesb.2019.01.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cordin, Michael, and Thomas Bechtold. "Physical properties of lyocell-reinforced polypropylene composites from intermingled fibre with varying fibre volume fractions." Journal of Thermoplastic Composite Materials 31, no. 8 (2017): 1029–41. http://dx.doi.org/10.1177/0892705717734594.

Full text
Abstract:
Polypropylene (PP)-cellulose fibre blends exhibit substantial potential for the production of high-performance textile fibre–reinforced composites. The production of reinforced parts from PP-cellulose composites through thermal shaping of intermingled fibre blends is a strategy to form parts which exhibit superior mechanical properties. In this study, the use of intermingled fibre slivers with different ratios of lyocell fibres (CLY) and PP fibres as raw materials for thermally formed composites was investigated. Such a concept will maximize the interface between the reinforcement fibres and polymer matrix. The cellulose fibres remain oriented along the direction in which the drawing process was performed, which forms the basis for tailored fibre placement in technical production. Because of good surface contact between the cellulose fibre surface and PP matrix, no special coupling agents were required to improve the interfacial adhesion between the two different polymers. The share of CLY and PP fibres in the composite varied from 50% w/w CLY content, up to 70% w/w CLY. Besides analysis of the mechanical properties, such as tensile strength and E-modulus, attention was directed towards moisture sorption of the composites. The rate of sorption and amount of water bound in the composite were found to be dependent on the cellulose fibre content. Composites with a higher CLY content exhibited a more rapid and higher moisture uptake. In water saturated state, the ultimate tensile strength of composites reduced from 160 MPa to 90 MPa, which is an indicator for a reduced adhesion between the CLY surface and PP matrix. The results indicate the potential of the intermingled fibre concept blend for the efficient manufacturing of composite parts.
APA, Harvard, Vancouver, ISO, and other styles
8

Domenech-Pastor, J., P. Diaz-Garcia, and D. Garcia. "CARBON FIBRE ALIGNMENT FOR REINFORCED COMPOSITES USING EMBROIDERY TECHNOLOGY." TEXTEH Proceedings 2021 (October 22, 2021): 102–8. http://dx.doi.org/10.35530/tt.2021.14.

Full text
Abstract:
Composites are materials formed by the combination of two or more components that acquire better properties than the ones obtained by each component on its own. Composites have been widely used in the industry due to its light weight and good mechanical properties. To improve these properties several layers of reinforced material (e.g., carbon fibre) are overlapped which produce an increase in the fibre consumption. In this sense Tailored Fibre Placement (TFP) embroidery can offer good opportunity to reduce the consumption of reinforced fibre while improving the mechanical properties due to the alignment of the fibres in the effort direction. This study analyzes the performance of carbon fibre reinforced composites with Polyester resin made with TFP embroidery technology against flexural strength efforts and without using plain woven fabrics to demonstrate that the use of reinforcement fabrics in composites can be optimized by a curved alignment of the fibers. Two different structures were embroidered with TFP technology, one simulating a woven fabric with straight unidirectional alignment of fibres in horizontal and vertical direction, and a second structure made with curvilinear alignment of carbon fibers. After the study of the flexural mechanical properties an improvement of 18% was obtained in maximum flexural strength.
APA, Harvard, Vancouver, ISO, and other styles
9

Astwood, Simon, Kiran Krishnamurthy, and Ashutosh Tiwari. "A strategy to analyse composite designs to improve automated production speeds." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 232, no. 1 (2016): 32–39. http://dx.doi.org/10.1177/0954405416660996.

Full text
Abstract:
When a composite laminate is tailored to suit its design intent, it is possible to improve the individual ply shapes to reduce component mass. If the laminate is going to be manufactured using an automated deposition system such as an automated fibre placement machine, then the design of the laminate will also influence the material deposition speed. This article identifies methodologies for indicating the likely impact on automated manufacture at the design optimisation stage by evaluating the ratio of ply perimeter to ply surface area when the laminate is defined as a simplified array of cells which are filled or unfilled to create a two-dimensional representation of the ply shape. A set of recommendations are made for using the methodology for improving deposition speed.
APA, Harvard, Vancouver, ISO, and other styles
10

Gliesche, K. "Application of the tailored fibre placement (TFP) process for a local reinforcement on an “open-hole” tension plate from carbon/epoxy laminates." Composites Science and Technology 63, no. 1 (2003): 81–88. http://dx.doi.org/10.1016/s0266-3538(02)00178-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!