Academic literature on the topic 'Tangent'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tangent.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Tangent"
Дмитриева, И., I. Dmitrieva, Геннадий Иванов, and Gennadiy Ivanov. "Competence Approach in Teaching the Topic "Tangent Plane and Normal"." Geometry & Graphics 6, no. 4 (January 29, 2019): 47–54. http://dx.doi.org/10.12737/article_5c21f80e2925c6.80568562.
Full textKoval, Galyna, Margarita Lazarchuk, and Liudmila Ovsienko. "APPLICATION OF CIRCLES FOR CONJUGATION OF FLAT CONTOURS OF THE FIRST ORDER OF SMOOTHNESS." APPLIED GEOMETRY AND ENGINEERING GRAPHICS, no. 100 (May 24, 2021): 162–71. http://dx.doi.org/10.32347/0131-579x.2021.100.162-171.
Full textWatkins, G. G. "Clarke's tangent vectors as tangents to lipschitz continuous curves." Journal of Optimization Theory and Applications 45, no. 2 (February 1985): 325–34. http://dx.doi.org/10.1007/bf00939984.
Full textLê, Công-Trình, and Tien-Son Phạm. "On tangent cones at infinity of algebraic varieties." Journal of Algebra and Its Applications 17, no. 08 (July 8, 2018): 1850143. http://dx.doi.org/10.1142/s0219498818501438.
Full textQi, Feng. "Derivatives of tangent function and tangent numbers." Applied Mathematics and Computation 268 (October 2015): 844–58. http://dx.doi.org/10.1016/j.amc.2015.06.123.
Full textStanley, P. "Tangent Circles." Mathematical Gazette 86, no. 507 (November 2002): 386. http://dx.doi.org/10.2307/3621129.
Full textSimis, Aron, Bernd Ulrich, and Wolmer V. Vasconcelos. "Tangent algebras." Transactions of the American Mathematical Society 364, no. 2 (February 1, 2012): 571–94. http://dx.doi.org/10.1090/s0002-9947-2011-05161-5.
Full textDoris Devenport. "Another Tangent." Appalachian Heritage 36, no. 3 (2008): 55. http://dx.doi.org/10.1353/aph.2008.0032.
Full textMartin, D. H., and G. G. Watkins. "Cores of Tangent Cones and Clarke's Tangent Cone." Mathematics of Operations Research 10, no. 4 (November 1985): 565–75. http://dx.doi.org/10.1287/moor.10.4.565.
Full textChoi, Woocheol, and Raphaël Ponge. "Tangent maps and tangent groupoid for Carnot manifolds." Differential Geometry and its Applications 62 (February 2019): 136–83. http://dx.doi.org/10.1016/j.difgeo.2018.11.002.
Full textDissertations / Theses on the topic "Tangent"
Gargano, John Thomas. "A tangent between spheres." The Ohio State University, 1997. http://rave.ohiolink.edu/etdc/view?acc_num=osu1327001471.
Full textMartin, Adrian. "Density bounds and tangent measures." Thesis, University of Sussex, 2013. http://sro.sussex.ac.uk/id/eprint/45279/.
Full textFranch, Bullich Jaume. "Flatness, tangent systems and flat outputs." Doctoral thesis, Universitat Politècnica de Catalunya, 1999. http://hdl.handle.net/10803/6730.
Full textEn el marco de álgebra diferencial, se presenta un estudio de los sistemas lineales de control desde la perspectiva de la teoría de módulos. A pesar de que los resultados han sido establecidos previamente por otros autores, algunas demostraciones y ejemplos son originales.
Entre las nuevas demostraciones cabe resaltar la que se refiere a la equivalencia entre sistemas de control lineales en representación de variables de estado, y los módulos sobre un anillo de operadores diferenciales. Los resultados de este estudio son ampliamente utilizados en el desarrollo de otros capítulos de la tesis en los que se usa el álgebra diferencial. En este contexto las principales contribuciones son:
Una nueva demostración del hecho, bien conocido, que la linealización por realimentación estática y la linealización por realimentación dinámica son equivalentes en el caso de sistemas de entrada simple. Para la linealización de este tipo de sistemas, se desarrolla un nuevo algoritmo.
Un procedimiento teórico para linealizar sistemas de entrada múltiple, basado en el cociente de módulos. También se ha hecho un paquete informático para llevar a cabo los cálculos necesarios. Debe mencionarse que este procedimiento es válido para linealizar sistemas mediante realimentación estática, así como para sistemas que sólo puedan linealizarse mediante realimentación dinámica.
Una condición para comprobar si las salidas linealizantes encontradas pueden obtenerse mediante prolongaciones. Como aplicación, se muestran algunos ejemplos de sistemas linealizables por prolongaciones. Algunos de estos sistemas se creían que no eran linealizables mediante esta técnica.
Whited, Brian Scott. "Tangent-ball techniques for shape processing." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31670.
Full textCommittee Chair: Jarek Rossignac; Committee Member: Greg Slabaugh; Committee Member: Greg Turk; Committee Member: Karen Liu; Committee Member: Maryann Simmons. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Lokteva, Elizaveta. "On Smooth Knots and Tangent Lines." Thesis, Uppsala universitet, Algebra och geometri, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-354484.
Full textKnight, R. W. "Generalized tangent-disc spaces and Q-sets." Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.257958.
Full textHennion, Benjamin. "Formal loops spaces and tangent Lie algebras." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS160/document.
Full textIf M is a symplectic manifold then the space of smooth loops C(S^1,M) inherits of a quasi-symplectic form. We will focus in this thesis on an algebraic analogue of that result.In their article, Kapranov and Vasserot introduced and studied the formal loop space of a scheme X. It is an algebraic version of the space of smooth loops in a differentiable manifold.We generalize their construction to higher dimensional loops. To any scheme X -- not necessarily smooth -- we associate L^d(X), the space of loops of dimension d. We prove it has a structure of (derived) Tate scheme -- ie its tangent is a Tate module: it is infinite dimensional but behaves nicely enough regarding duality.We also define the bubble space B^d(X), a variation of the loop space.We prove that B^d(X) is endowed with a natural symplectic form as soon as X has one.To prove our results, we develop a theory of Tate objects in a stable infinity category C. We also prove that the non-connective K-theory of Tate(C) is the suspension of that of C, giving an infinity categorical version of a result of Saito.The last chapter is aimed at a different problem: we prove there the existence of a Lie structure on the tangent of a derived Artin stack X. Moreover, any quasi-coherent module E on X is endowed with an action of this tangent Lie algebra through the Atiyah class of E. This in particular applies to not necessarily smooth schemes X
Webber, Nicholas Jon. "Local tangent space approximation in canonical quantization." Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/38183.
Full textFahlaoui, Rachid. "Stabilité du fibré tangent des surfaces algébriques." Paris 11, 1989. http://www.theses.fr/1989PA112170.
Full textThis thesis is concerned with the stability of the tangent bundle of algebraic surfaces. We consider two notions of stability: stability in the sense of Mumford-Takemoto and T-stability (Bogomolov stability). For surfaces with positive canonical (resp. Anti-canonical) bundle, the existence of a Kähler-Einstein metric implies the semi-stability of the tangent bundle with respect to the canonical (resp. Anti-canonical) class. If K is positive, such a metric exists, which implies K-semi-stability. This leads us to study the case of surfaces with negative canonical bundle. We give an algebraic proof, valid in any characteristic, of the semi-stability of the tangent bundle with respect to the canonical class. We generalize this result to surfaces with numerically negative canonical bundle satisfying: if the rank of the Picard group is nine, the anti-canonical linear system contains a singular semi-stable curve. Then we turn to T-stability, distinguishing three cases: elliptic surfaces, surfaces with vanishing first Chern class and geometrically ruled surfaces. We characterize the ones for which the tangent bundle is T-semi-stable and, in the last two cases, the ones for which the tangent bundle is T-stable
Moerters, Peter. "Tangent measure distributions and the geometry of measures." Thesis, University College London (University of London), 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307661.
Full textBooks on the topic "Tangent"
Dwayne, McDuffie, and Marz Ron, eds. Tangent: Superman's reign. New York: DC Comics, 2009.
Find full text1960-, Paiement Alain, and Amelunxen Hubertus von, eds. Tangent e: Alain Paiement. Montréal: Canadian Centre for Architecture, 2003.
Find full text1953-, Brush Debra, and Samard Eileen, eds. History of Tangent, Oregon. Dallas, Tex: Curtis Media Corp., 1993.
Find full textSettle, Ellis W. Ceremonies at Tangent Stone. Washington Depot, CT: Design to Printing, 1995.
Find full textRectifiable sets, densities and tangent measures. Zurich, Switzerland: European Mathematical Society, 2008.
Find full textA simplified guide to custom stairbuilding and tangent handrailing. Fresno, CA: Linden Pub., 2000.
Find full textA simplified guide to custom stairbuilding and tangent handrailing. Fresno, CA: Linden Pub., 1994.
Find full textBook chapters on the topic "Tangent"
Weik, Martin H. "tangent." In Computer Science and Communications Dictionary, 1734. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_19045.
Full textCasey, James. "Tangent." In Exploring Curvature, 100–112. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-322-80274-3_9.
Full textKhan, Akhtar A., Christiane Tammer, and Constantin Zălinescu. "Tangent Cones and Tangent Sets." In Vector Optimization, 109–211. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54265-7_4.
Full textRusso, Francesco. "Tangent Cones, Tangent Spaces, Tangent Stars: Secant, Tangent, Tangent Star and Dual Varieties of an Algebraic Variety." In On the Geometry of Some Special Projective Varieties, 1–38. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26765-4_1.
Full textBlair, David E. "Tangent Bundles and Tangent Sphere Bundles." In Riemannian Geometry of Contact and Symplectic Manifolds, 137–55. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4757-3604-5_9.
Full textBlair, David E. "Tangent Bundles and Tangent Sphere Bundles." In Riemannian Geometry of Contact and Symplectic Manifolds, 169–93. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4959-3_9.
Full textDineen, Seán. "Tangent Planes." In Functions of Two Variables, 54–60. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-3250-1_8.
Full textVerruijt, Arnold. "Tangent Modulus." In An Introduction to Soil Mechanics, 109–14. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61185-3_13.
Full textGrøn, Øyvind, and Arne Næss. "Tangent vectors." In Einstein's Theory, 43–59. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0706-5_3.
Full textSinha, Rajnikant. "Tangent Spaces." In Smooth Manifolds, 31–124. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-2104-3_2.
Full textConference papers on the topic "Tangent"
Onuma, Kensuke, Hanghang Tong, and Christos Faloutsos. "TANGENT." In the 15th ACM SIGKDD international conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1557019.1557093.
Full textWong, Wai-Him, and Horace H. S. Ip. "Direction-dependent tangent: a new tangent representation." In IS&T/SPIE's Symposium on Electronic Imaging: Science & Technology, edited by Robert L. Stevenson and Sarah A. Rajala. SPIE, 1995. http://dx.doi.org/10.1117/12.205481.
Full textMansouri, Behrooz, Shaurya Rohatgi, Douglas W. Oard, Jian Wu, C. Lee Giles, and Richard Zanibbi. "Tangent-CFT." In ICTIR '19: The 2019 ACM SIGIR International Conference on the Theory of Information Retrieval. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3341981.3344235.
Full textLee, Jianguo, Jingdong Wang, Changshui Zhang, and Zhaoqi Bian. "Probabilistic tangent subspace." In Twenty-first international conference. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1015330.1015362.
Full textGeorge, Phillip. "Tangent @ 23 X." In ACM SIGGRAPH 97 Visual Proceedings: The art and interdisciplinary programs of SIGGRAPH '97. New York, New York, USA: ACM Press, 1997. http://dx.doi.org/10.1145/259081.259129.
Full textGeorge, Phillip. "Tangent @ 23 fire." In ACM SIGGRAPH 97 Visual Proceedings: The art and interdisciplinary programs of SIGGRAPH '97. New York, New York, USA: ACM Press, 1997. http://dx.doi.org/10.1145/259081.259130.
Full textTakano, Gaku, Makoto Obayashi, and Keisuke Uto. "Path planning for autonomous car to avoid moving obstacles by steering using tangent-arc-tangent-arc-tangent model." In 2015 IEEE Conference on Control Applications (CCA). IEEE, 2015. http://dx.doi.org/10.1109/cca.2015.7320855.
Full textHunt, Thomas, and Arthur J. Krener. "Principal tangent data reduction." In 2009 IEEE International Conference on Control and Automation (ICCA). IEEE, 2009. http://dx.doi.org/10.1109/icca.2009.5410162.
Full textBoulakradeche, M., S. Ait Aoudia, D. Michelucci, A. Farouzi, and K. Taibouni. "Segmentation By Tangent Filter." In the Mediterranean Conference. New York, New York, USA: ACM Press, 2016. http://dx.doi.org/10.1145/3038884.3038889.
Full textPasa, Luca, Nicolò Navarin, and Alessandro Sperduti. "Tangent Graph Convolutional Network." In ESANN 2021 - European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Louvain-la-Neuve (Belgium): Ciaco - i6doc.com, 2021. http://dx.doi.org/10.14428/esann/2021.es2021-143.
Full textReports on the topic "Tangent"
Zinkle, S. J., and R. H. Goulding. Loss tangent measurements on unirradiated alumina. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/270454.
Full textMunteanu, Marian Ioan. Old and New Structures on the Tangent Bundle. GIQ, 2012. http://dx.doi.org/10.7546/giq-8-2007-264-278.
Full textBivas, Mira, Nadezhda Ribarska, and Mladen Valkov. Properties of Uniform Tangent Sets and Lagrange Multiplier Rule. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, July 2018. http://dx.doi.org/10.7546/crabs.2018.07.02.
Full textMiller, Arthur J., and Bruce D. Cornuelle. ROMS Tangent Linear and Adjoint Models: Testing and Applications. Fort Belvoir, VA: Defense Technical Information Center, October 2001. http://dx.doi.org/10.21236/ada390458.
Full textMoore, Andrew M. ROMS/TOMS Tangent Linear and Adjoint Models:Testing and Applications. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada626935.
Full textArango, Hernan G. ROMS Tangent Linear and Adjoint Models: Testing and Applications. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada625256.
Full textMiller, Arthur J., and Bruce D. Cornuelle. ROMS Tangent Linear and Adjoint Models: Testing and Applications. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada625422.
Full textMiller, Arthur J., and Bruce D. Cornuelle. ROMS/TOMS Tangent Linear and Adjoint Models: Testing and Applications. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada432421.
Full textArango, Hernan G. ROMS/TOMS Tangent Linear and Adjoint Models: Testing and Applications. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada630975.
Full textMiller, Arthur J., Bruce D. Cornuelle, and Andrew M. Moore. ROMS/TOMS Tangent Linear and Adjoint Models: Testing and Applications. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada620406.
Full text