Academic literature on the topic 'Tangent bundles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tangent bundles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Tangent bundles"
Abdel Radi Abdel Rahman Abdel Gadir Abdel Rahman and Makarim Abdullah Mohammed Ali Mohammed. "Investigate A New Tangent Bundle Space from A New Point and Two Curves using MATLAB." IJRDO -JOURNAL OF MATHEMATICS 10, no. 1 (January 25, 2024): 1–11. http://dx.doi.org/10.53555/m.v10i1.5979.
Full textISIDRO, JOSÉ M. "QUANTUM STATES FROM TANGENT VECTORS." Modern Physics Letters A 19, no. 31 (October 10, 2004): 2339–52. http://dx.doi.org/10.1142/s0217732304015634.
Full textSultanov, A. Ya, G. A. Sultanova, and N. V. Sadovnikov. "Affine transformations of the tangent bundle with a complete lift connection over a manifold with a linear connection of special type." Differential Geometry of Manifolds of Figures, no. 52 (2021): 137–43. http://dx.doi.org/10.5922/0321-4796-2021-52-13.
Full textSultanov, A. Ya, and G. A. Sultanova. "On the local representation of synectic connections on Weil bundles." Differential Geometry of Manifolds of Figures, no. 53 (2022): 118–26. http://dx.doi.org/10.5922/0321-4796-2022-53-11.
Full textJacobowitz, Howard, and Gerardo Mendoza. "Sub-bundles of the complexified tangent bundle." Transactions of the American Mathematical Society 355, no. 10 (June 10, 2003): 4201–22. http://dx.doi.org/10.1090/s0002-9947-03-03350-6.
Full textFeizabadi, Hassan, and Naser Boroojerdian. "Extending Tangent Bundles by an Algebra Bundle." Iranian Journal of Science and Technology, Transactions A: Science 42, no. 2 (February 13, 2018): 615–21. http://dx.doi.org/10.1007/s40995-018-0515-y.
Full textAli, Sahadat. "Prolongation of Tensor Fields and G-Structures in Tangent Bundles of Second Order." Journal of the Tensor Society 9, no. 01 (June 30, 2009): 77–81. http://dx.doi.org/10.56424/jts.v9i01.10563.
Full textLi, Tongzhu, and Demeter Krupka. "The Geometry of Tangent Bundles: Canonical Vector Fields." Geometry 2013 (April 14, 2013): 1–10. http://dx.doi.org/10.1155/2013/364301.
Full textCRASMAREANU, MIRCEA. "DIRAC STRUCTURES FROM LIE INTEGRABILITY." International Journal of Geometric Methods in Modern Physics 09, no. 04 (May 6, 2012): 1220005. http://dx.doi.org/10.1142/s0219887812200058.
Full textAbbassi, Mohamed Tahar Kadaoui, and Ibrahim Lakrini. "On the completeness of total spaces of horizontally conformal submersions." Communications in Mathematics 29, no. 3 (December 1, 2021): 493–504. http://dx.doi.org/10.2478/cm-2021-0031.
Full textDissertations / Theses on the topic "Tangent bundles"
Tureli, Sina. "Integrability of Continuous Tangent Sub-bundles." Doctoral thesis, SISSA, 2015. http://hdl.handle.net/20.500.11767/4876.
Full textHindeleh, Firas. "Tangent and cotangent bundles automorphism groups and representations of Lie groups /." See Full Text at OhioLINK ETD Center (Requires Adobe Acrobat Reader for viewing), 2006. http://www.ohiolink.edu/etd/view.cgi?acc_num=toledo1153933389.
Full textTypescript. "A dissertation [submitted] as partial fulfillment of the requirements of the Doctor of Philosophy degree in Mathematics." Bibliography: leaves 79-82.
Hindeleh, Firas Y. "Tangent and Cotangent Bundles, Automorphism Groups and Representations of Lie Groups." University of Toledo / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1153933389.
Full textWang, Hongyuan. "On a class of algebraic surfaces with numerically effective cotangent bundles." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1154450131.
Full textPavolaitė, Miglė. "Simetrinės trečiosios eilės liestinės sluoksniuotės." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2010. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2010~D_20100709_091446-82031.
Full textThe paper examined the symmetric third order tangent bundle, defined as 3- jet space. Found symmetric space isotropy group, as well as its isomorphy group. The resulting structural equation of isomorphy group, find this area Maurer - Cartan analogues of equations, an established formula, expressing inducted affines connection component of curvature tensors of the isomorphy group structural constants. Also received identities connecting the curvature objects structural constants of isomorphy group (generalized in Riči and Bianchi identity).
Mickutė, Laura. "Apie trečios eilės liestinių sluoksniuočių geometriją." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2005. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2005~D_20050623_101559-72938.
Full textSilva, Rafael Barbosa da. "Existência de conexões versus módulos projetivos." Universidade Federal da Paraíba, 2013. http://tede.biblioteca.ufpb.br:8080/handle/tede/7424.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The notions of connection and covariant derivative has its origin in the field of Riemannian geometry , where there is no distinction between them. In fact, in this study we found that these notions are equivalent if we consider modules over K-algebras of finite type. We also show that the existence of connections implies the existence of covariant derivative. The main goal of this study is to determine which modules admit connections. We easily verified that the projective modules admit connections. In fact, they form an affine space. But we also display a module that is not projective and has connection. Later, inspired by Swan's theorem, we explore in a straightforward way modules formed by sections of the tangent bundle of some surfaces in 3-dimensional real space. Finally, we study the notion of connection introduced by Alain Connes in modules over K-algebras not necessarily commutative. And we find in that context that the modules that have connection are exactly the projectives modules.
As noções de conexão e derivada covariante tem sua origem na área de geometria riemanniana, onde não existe distinção entre elas. De fato, nós verificamos neste trabalho, que estas noções são equivalentes se considerarmos módulos sobre K-álgebras comutativas de tipo finito. Também mostramos que a existência de conexões implica na existência de derivada covariante. O objetivo central deste trabalho é determinar que módulos admitem conexão. Verificamos facilmente que os módulos projetivos admitem conexões. De fato, elas formam um espaço afim. Mas também exibimos um módulo não projetivo que possui conexão. Posteriormente, inspirados pelo teorema de Swan, exploramos de maneira direta os módulos formados pelas seções do fibrado tangente de algumas superfícies no espaço 3- dimensional real. Por fim, estudamos a noção de conexão introduzida por Alain Connes em módulos sobre K-álgebras não necessariamente comutativas. E verificamos nesse contexto que os módulo que admitem conexão são exatamente os módulos projetivos.
Kravčenkaitė, Deimantė. "Euklido erdvės liečiamojo pluošto hiperpaviršių struktūra ir geometrinė prasmė." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2012. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20120702_110845-55808.
Full textIn the work, the generalized (φ, ξ, η, g)-structures in normalized hypersurfaces M2n-1 T(En) are found and its properties are investigated. Geometric meaning in basis En of some interesting hypersurfaces (hypersphere, hyperplane, hypercone,…) is explained.
Simsir, Muazzez Fatma. "Conformal Vector Fields With Respect To The Sasaki Metric Tensor Field." Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12605857/index.pdf.
Full textBauer, David. "Towards Discretization by Piecewise Pseudoholomorphic Curves." Doctoral thesis, Universitätsbibliothek Leipzig, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-132065.
Full textBooks on the topic "Tangent bundles"
Kashiwara, Masaki. Introduction to microlocal analysis. Gene ve: L'Enseignement mathe matique, Universite de Gene ve, 1986.
Find full textMann, Peter. Linear Algebra. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0037.
Full textMann, Peter. Differential Geometry. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0038.
Full textMann, Peter. Coordinates & Constraints. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0006.
Full textMann, Peter. Constrained Hamiltonian Dynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0021.
Full textMann, Peter. The Hamiltonian & Phase Space. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0014.
Full textMann, Peter. The Jacobi Energy Function. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0010.
Full textMann, Peter. Symmetries & Lagrangian-Hamilton-Jacobi Theory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0011.
Full textBook chapters on the topic "Tangent bundles"
Blair, David E. "Tangent Bundles and Tangent Sphere Bundles." In Riemannian Geometry of Contact and Symplectic Manifolds, 137–55. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4757-3604-5_9.
Full textBlair, David E. "Tangent Bundles and Tangent Sphere Bundles." In Riemannian Geometry of Contact and Symplectic Manifolds, 169–93. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4959-3_9.
Full textHasegawa, Izumi, and Kazunari Yamauchi. "Infinitesimal Projective Transformations on Tangent Bundles." In Finsler and Lagrange Geometries, 91–98. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0405-2_9.
Full textAntonelli, P. L., and T. J. Zastawniak. "Diffusion on the Tangent and Indicatrix Bundles." In Fundamentals of Finslerian Diffusion with Applications, 159–74. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4824-5_7.
Full textAntonelli, P. L. "Diffusion on the Tangent and Indicatrix Bundles." In Handbook of Finsler Geometry, 319–33. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-007-0942-3_16.
Full textOpozda, Barbara. "On the Tangent Bundles of Statistical Manifolds." In Lecture Notes in Computer Science, 199–206. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-38271-0_20.
Full textMaurin, Krzysztof. "Tangent Bundle TM. Vector, Fiber, Tensor and Tensor Densities, and Associate Bundles." In The Riemann Legacy, 242–52. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8939-0_22.
Full textKitayama, Masashi. "Induced Vector Fields in a Hypersurface of Riemannian Tangent Bundles." In Finsler and Lagrange Geometries, 109–11. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0405-2_11.
Full textAntonelli, P. L., and T. J. Zastawniak. "Diffusion on the Tangent and Indicatrix Bundles of a Finsler Manifold." In The Theory of Finslerian Laplacians and Applications, 89–110. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5282-2_6.
Full textPeternell, Thomas. "Tangent Bundles, Rational Curves, and the Geometry of Manifolds of Negative Kodaira Dimension." In Complex Analysis and Geometry, 293–310. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4757-9771-8_12.
Full textConference papers on the topic "Tangent bundles"
Kowalski, Oldřich, and Masami Sekizawa. "Invariance of g-natural metrics on tangent bundles." In Proceedings of the 10th International Conference on DGA2007. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812790613_0015.
Full textCHO, JONG TAEK, and SUN HYANG CHUN. "A NEW STRUCTURE ON UNIT TANGENT SPHERE BUNDLES." In Proceedings in Honor of Professor K Sekigawa's 60th Birthday. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701701_0005.
Full textVACARU, SERGIU I. "COVARIANT RENORMALIZABLE GRAVITY THEORIES ON (NON) COMMUTATIVE TANGENT BUNDLES." In Proceedings of the MG13 Meeting on General Relativity. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814623995_0398.
Full textKAJIGAYA, Toru. "ON THE MINIMALITY OF NORMAL BUNDLES IN THE TANGENT BUNDLES OVER THE COMPLEX SPACE FORMS." In Proceedings of the International Workshop in Honor of S Maeda's 60th Birthday. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814566285_0022.
Full textHasegawa, Izumi, and Kazunari Yamauchi. "Conformally-projectively flat statistical structures on tangent bundles over statistical manifolds." In Proceedings of the 10th International Conference on DGA2007. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812790613_0021.
Full textMANEV, MANCHO. "TANGENT BUNDLES WITH SASAKI METRIC AND ALMOST HYPERCOMPLEX PSEUDO-HERMITIAN STRUCTURE." In Proceedings in Honor of Professor K Sekigawa's 60th Birthday. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701701_0013.
Full textLeonardos, Spyridon, Xiaowei Zhou, and Kostas Daniilidis. "Articulated motion estimation from a monocular image sequence using spherical tangent bundles." In 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2016. http://dx.doi.org/10.1109/icra.2016.7487183.
Full textKADAOUI ABBASSI, MOHAMED TAHAR, and OLDŘICH KOWALSKI. "ON G-NATURAL METRICS WITH CONSTANT SCALAR CURVATURE ON UNIT TANGENT SPHERE BUNDLES." In Proceedings in Honor of Professor K Sekigawa's 60th Birthday. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701701_0001.
Full textPatrick, George W., Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Variational Discretizations: Discrete Tangent Bundles, Local Error Analysis, and Arbitrary Order Variational Integrators." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241221.
Full textSATO, TAKUJI. "ON A FAMILY OF ALMOST KÄHLER STRUCTURES ON THE TANGENT BUNDLES OVER SOME STATISTICAL MODELS." In Proceedings in Honor of Professor K Sekigawa's 60th Birthday. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701701_0017.
Full textReports on the topic "Tangent bundles"
Druta, Simona L. The Sectional Curvature of the Tangent Bundles with General Natural Lifted Metrics. GIQ, 2012. http://dx.doi.org/10.7546/giq-9-2008-198-209.
Full textMunteanu, Marian Ioan. Old and New Structures on the Tangent Bundle. GIQ, 2012. http://dx.doi.org/10.7546/giq-8-2007-264-278.
Full textGezer, Aydin, and Lokman Bilen. Projective Vector Fields on the Tangent Bundle with a Class of Riemannian Metrics. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, May 2018. http://dx.doi.org/10.7546/crabs.2018.05.01.
Full textBoumaiza, Mohamed. Poisson-Lie Structure on the Tangent Bundle of a Poisson-Lie Group and Poisson Action Lifting. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-4-2005-1-18.
Full textZohrehvand, Mosayeb. IFHP Transformations on the Tangent Bundle of a Riemannian Manifold with a Class of Pseudo-Riemannian Metrics. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, February 2020. http://dx.doi.org/10.7546/crabs.2020.02.04.
Full text