Academic literature on the topic 'TANK-binding kinase 1'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'TANK-binding kinase 1.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "TANK-binding kinase 1"

1

Revach, Or-Yam, Shuming Liu, and Russell W. Jenkins. "Targeting TANK-binding kinase 1 (TBK1) in cancer." Expert Opinion on Therapeutic Targets 24, no. 11 (2020): 1065–78. http://dx.doi.org/10.1080/14728222.2020.1826929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Durand, Joel, Qing Zhang та Albert Baldwin. "Roles for the IKK-Related Kinases TBK1 and IKKε in Cancer". Cells 7, № 9 (2018): 139. http://dx.doi.org/10.3390/cells7090139.

Full text
Abstract:
While primarily studied for their roles in innate immune response, the IκB kinase (IKK)-related kinases TANK-binding kinase 1 (TBK1) and IKKε also promote the oncogenic phenotype in a variety of cancers. Additionally, several substrates of these kinases control proliferation, autophagy, cell survival, and cancer immune responses. Here we review the involvement of TBK1 and IKKε in controlling different cancers and in regulating responses to cancer immunotherapy.
APA, Harvard, Vancouver, ISO, and other styles
3

Tu, Daqi, Zehua Zhu, Alicia Y. Zhou, et al. "Structure and Ubiquitination-Dependent Activation of TANK-Binding Kinase 1." Cell Reports 3, no. 3 (2013): 747–58. http://dx.doi.org/10.1016/j.celrep.2013.01.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ma, X., E. Helgason, Q. T. Phung, et al. "Molecular basis of Tank-binding kinase 1 activation by transautophosphorylation." Proceedings of the National Academy of Sciences 109, no. 24 (2012): 9378–83. http://dx.doi.org/10.1073/pnas.1121552109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xie, X., D. Zhang, B. Zhao, et al. "I B kinase and TANK-binding kinase 1 activate AKT by direct phosphorylation." Proceedings of the National Academy of Sciences 108, no. 16 (2011): 6474–79. http://dx.doi.org/10.1073/pnas.1016132108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sawal, Humaira Aziz, Shagufta Nighat, Tanzeela Safdar, and Laiba Anees. "Comparative In Silico Analysis and Functional Characterization of TANK-Binding Kinase 1–Binding Protein 1." Bioinformatics and Biology Insights 17 (January 2023): 117793222311648. http://dx.doi.org/10.1177/11779322231164828.

Full text
Abstract:
Protein modelling plays a vital role in the drug discovery process. TANK-binding kinase 1–binding protein 1 is also called an adapter protein, which is encoded by gene TBK1 present in Homo sapiens. It is found in lungs, small intestine, leukocytes, heart, placenta, muscle, kidney, lower level of thymus, and brain. It has a number of protein-binding sites, to which TBK1 and IKBKE bind and perform different functions as immunomodulatory, antiproliferative, and antiviral innate immunity which release different types of interferons. Our study predicts the comparative model of 3-dimensional (3D) st
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Wanqiao, Jian Wang, Ying Zhang та ін. "The Scaffold Protein TANK/I-TRAF Inhibits NF-κB Activation by Recruiting Polo-like Kinase 1". Molecular Biology of the Cell 21, № 14 (2010): 2500–2513. http://dx.doi.org/10.1091/mbc.e09-08-0715.

Full text
Abstract:
TANK/I-TRAF is a TRAF-binding protein that negatively regulates NF-κB activation. The underlying mechanism of this activity remains unclear. Here we show that TANK directly interacts with PLK1, a conserved cell cycle–regulated kinase. PLK1 inhibits NF-κB transcriptional activation induced by TNF-α, IL-1β, or several activators, but not by nuclear transcription factor p65. PLK1 expression reduces the DNA-binding activity of NF-κB induced by TNF-α. Moreover, endogenous activation of PLK1 reduces the TNF-induced phosphorylation of endogenous IκBα. PLK1 is bound to NEMO (IKKγ) through TANK to form
APA, Harvard, Vancouver, ISO, and other styles
8

Larabi, Amede, Juliette M. Devos, Sze-Ling Ng, et al. "Crystal Structure and Mechanism of Activation of TANK-Binding Kinase 1." Cell Reports 3, no. 3 (2013): 734–46. http://dx.doi.org/10.1016/j.celrep.2013.01.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bakshi, Siddharth, Jordan Taylor, Sam Strickson, Thomas McCartney та Philip Cohen. "Identification of TBK1 complexes required for the phosphorylation of IRF3 and the production of interferon β". Biochemical Journal 474, № 7 (2017): 1163–74. http://dx.doi.org/10.1042/bcj20160992.

Full text
Abstract:
The double-stranded RNA mimetic poly(I:C) and lipopolysaccharide (LPS) activate Toll-like receptors 3 (TLR3) and TLR4, respectively, triggering the activation of TANK (TRAF family member-associated NF-κB activator)-binding kinase 1 (TBK1) complexes, the phosphorylation of interferon regulatory factor 3 (IRF3) and transcription of the interferon β (IFNβ) gene. Here, we demonstrate that the TANK–TBK1 and optineurin (OPTN)–TBK1 complexes control this pathway. The poly(I:C)- or LPS-stimulated phosphorylation of IRF3 at Ser396 and production of IFNβ were greatly reduced in bone marrow-derived macro
APA, Harvard, Vancouver, ISO, and other styles
10

Zhao, Chunyuan, and Wei Zhao. "TANK-binding kinase 1 as a novel therapeutic target for viral diseases." Expert Opinion on Therapeutic Targets 23, no. 5 (2019): 437–46. http://dx.doi.org/10.1080/14728222.2019.1601702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "TANK-binding kinase 1"

1

Miyahira, Andrea Kiem Hwa Malawaina. "The regulation of type I interferon responses to pathogen recognition receptor pathways by TANK-binding kinase-1." Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1693160891&sid=7&Fmt=2&clientId=1564&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stephan, Heike Isabell [Verfasser], Ellen [Akademischer Betreuer] Niederberger, and Bernhard [Akademischer Betreuer] Brüne. "Untersuchungen zur Rolle der TANK-Binding Kinase (TBK) 1 bei entzündlichen Schmerzreaktionen / Heike Isabell Stephan. Gutachter: Ellen Niederberger ; Bernhard Brüne." Frankfurt am Main : Univ.-Bibliothek Frankfurt am Main, 2015. http://d-nb.info/1070911038/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Stephan, Heike [Verfasser], Ellen [Akademischer Betreuer] Niederberger, and Bernhard [Akademischer Betreuer] Brüne. "Untersuchungen zur Rolle der TANK-Binding Kinase (TBK) 1 bei entzündlichen Schmerzreaktionen / Heike Isabell Stephan. Gutachter: Ellen Niederberger ; Bernhard Brüne." Frankfurt am Main : Univ.-Bibliothek Frankfurt am Main, 2015. http://d-nb.info/1070911038/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pourcelot, Marie. "Implication de l’appareil de Golgi et de l’ubiquitination dans l’activation de TBK1 après détection des ARNs viraux." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS230/document.

Full text
Abstract:
L’immunité innée antivirale repose en grande partie sur la production des interférons de type I (IFN-α/β) par les cellules infectées et les cellules immunitaires. Cette synthèse résulte de la reconnaissance de motifs viraux caractéristiques par des récepteurs cellulaires, parmi lesquels les RIG-I-Like Récepteurs (RLR) et le Toll-Like Récepteur 3 (TLR3) détectent l’ARN viral respectivement au niveau du cytosol et des endosomes. La signalisation induite par les RLRs et TLR3 conduit à l’activation d’IRF3 et de NF-κB, deux facteurs de transcription impliqués respectivement dans la production d’IFN
APA, Harvard, Vancouver, ISO, and other styles
5

Frémond, Marie-Louise. "Clinical and molecular characterisation of the type I interferonopathies and approaches to therapy Efficacy of the Janus kinase 1/2 inhibitor ruxolitinib in the treatment of vasculopathy associated with TMEM173-activating mutations in three children Blockade of TANK-binding kinase 1/IKKε mutant stimulator of interferon genes (STING)-mediated inflammatory responses in human peripheral blood mononuclear cells". Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCB098.

Full text
Abstract:
Le concept d'interféronopathie de type I émerge en 2011 et fait référence à un ensemble de pathologies Mendéliennes caractérisées par une hyperactivation des interférons (IFN) de type I. Tous les gènes associés au syndrome d'Aicardi-Goutières (SAG), la première interféronopathie de type I décrite, sont impliqués dans la détection ou le métabolisme des acides nucléiques. Les autres protéines mutées associées aux interféronopathies de type I modifient toutes la voie de signalisation des acides nucléiques, de manière directe, indirecte ou encore non définie. Les IFN de type I se fixent à un récep
APA, Harvard, Vancouver, ISO, and other styles
6

Liou, Shu-Fan, and 劉書帆. "Suppression of the IRF-3 signaling pathway by the sfRNA of Japanese encephalitis virus is TANK-binding kinase-1 independent." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/5y5ja9.

Full text
Abstract:
碩士<br>國立東華大學<br>生命科學系<br>100<br>Noncoding RNA (ncRNA) plays a critical role in modulating various stages of viral life cycle. Abundant ncRNA (named sfRNA), representing a highly conserved region of the 3’-untranslated region (UTR) of Japanese encephalitis virus (JEV), accumulated in JEV-infected cells. Previous work in our laboratory demonstrated that transfecting sfRNA into JEV-infected cells inhibited phosphorylation of interferon regulatory factor-3 (IRF-3), blocked roughly 30% of IRF-3 nuclear translocation, and reduced interferon-β by 50%. In this study, transfection of sfRNA had no effec
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "TANK-binding kinase 1"

1

Marion, James. "TANK-Binding Kinase 1 (TBK1): Structure, Function, and Regulation." In Molecular Life Sciences. Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-6436-5_374-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Marion, James. "TANK-Binding Kinase 1 (TBK1): Structure, Function, and Regulation." In Molecular Life Sciences. Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4614-1531-2_374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Joharapurkar, Amit A., Vrajesh B. Pandya, Mukul R. Jain, and Ranjit C. Desai. "Recent Developments in IKB Kinases IKK-ε and Tank-Binding Kinase 1 (TBK1) Modulators." In 2020 Medicinal Chemistry Reviews. Medicinal Chemistry Division of the American Chemical Society, 2020. http://dx.doi.org/10.29200/acsmedchemrev-v55.ch20.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "TANK-binding kinase 1"

1

Hagan, R. S., J. C. Gomez, J. L. Torres-Castillo, J. R. Martin, and C. M. Doerschuk. "Functions of TANK-Binding Kinase 1 (TBK1) in Neutrophils During S. Pneumoniae Pneumonia." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a5912.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vishwakarma, Ajaykumar, Yi Sun, Amina Fu, et al. "Abstract B065: TANK-Binding Kinase 1 (TBK1) as a novel cancer immunotherapy target." In Abstracts: AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; October 26-30, 2019; Boston, MA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1535-7163.targ-19-b065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pillai, Smitha R., Jonathan Nguyen, Joseph Johnson, Eric Haura, Domenico Coppola, and Srikumar Chellappan. "Abstract 3771: Tank-binding kinase 1 associates with centrosomes and regulates microtubule dynamics and mitosis." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-3771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Burton, Victoria H., and Rolf A. Brekken. "Abstract 22: Investigating the functional contribution of TANK binding kinase 1 to inflammation induced disease progression." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Burton, Victoria H., and Rolf A. Brekken. "Abstract A71: Investigating the functional contribution of TANK Binding Kinase 1 to metabolic regulation in pancreas cancer." In Abstracts: AACR Special Conference: Metabolism and Cancer; June 7-10, 2015; Bellevue, WA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1557-3125.metca15-a71.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!