To see the other types of publications on this topic, follow the link: Tantala.

Journal articles on the topic 'Tantala'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Tantala.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Jung, Hojoong, Su-Peng Yu, David R. Carlson, Tara E. Drake, Travis C. Briles, and Scott B. Papp. "Tantala Kerr nonlinear integrated photonics." Optica 8, no. 6 (2021): 811. http://dx.doi.org/10.1364/optica.411968.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Naveenraj, Selvaraj, Gang-Juan Lee, Sambandam Anandan, and Jerry J. Wu. "Nanosized tantala based materials – synthesis and applications." Materials Research Bulletin 67 (July 2015): 20–46. http://dx.doi.org/10.1016/j.materresbull.2015.02.060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Höftberger, M., and G. Gritzner. "Niobia and tantala codoped orthorhombic zirconia ceramics." Scripta Metallurgica et Materialia 32, no. 8 (1995): 1237–41. http://dx.doi.org/10.1016/0956-716x(95)00132-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Baltes, Michael, Arla Kytökivi, Bert M. Weckhuysen, Robert A. Schoonheydt, Pascal Van Der Voort, and Etienne F. Vansant. "Supported Tantalum Oxide and Supported Vanadia-tantala Mixed Oxides: Structural Characterization and Surface Properties." Journal of Physical Chemistry B 105, no. 26 (2001): 6211–20. http://dx.doi.org/10.1021/jp010628b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ruckh, Timothy, Joshua R. Porter, Nageh K. Allam, Xinjian Feng, Craig A. Grimes, and Ketul C. Popat. "Nanostructured tantala as a template for enhanced osseointegration." Nanotechnology 20, no. 4 (2008): 045102. http://dx.doi.org/10.1088/0957-4484/20/4/045102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Penn, Steven D., Peter H. Sneddon, Helena Armandula, et al. "Mechanical loss in tantala/silica dielectric mirror coatings." Classical and Quantum Gravity 20, no. 13 (2003): 2917–28. http://dx.doi.org/10.1088/0264-9381/20/13/334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Black, Jennifer A., Richelle Streater, Kieran F. Lamee, David R. Carlson, Su-Peng Yu, and Scott B. Papp. "Group-velocity-dispersion engineering of tantala integrated photonics." Optics Letters 46, no. 4 (2021): 817. http://dx.doi.org/10.1364/ol.414095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Abernathy, Matthew, Gregory Harry, Jonathan Newport, et al. "Bulk and shear mechanical loss of titania-doped tantala." Physics Letters A 382, no. 33 (2018): 2282–88. http://dx.doi.org/10.1016/j.physleta.2017.08.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Harry, Gregory M., Matthew R. Abernathy, Andres E. Becerra-Toledo, et al. "Titania-doped tantala/silica coatings for gravitational-wave detection." Classical and Quantum Gravity 24, no. 2 (2006): 405–15. http://dx.doi.org/10.1088/0264-9381/24/2/008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Park, Daesung, Chandra Macauley, Abel Fernandez, and Carlos Levi. "Study of Yttria-Tantala Binary Using Scanning Transmission Electron Microscopy." Microscopy and Microanalysis 23, S1 (2017): 1674–75. http://dx.doi.org/10.1017/s1431927617009035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Lamee, Kieran F., David R. Carlson, Zachary L. Newman, Su-Peng Yu, and Scott B. Papp. "Nanophotonic tantala waveguides for supercontinuum generation pumped at 1560 nm." Optics Letters 45, no. 15 (2020): 4192. http://dx.doi.org/10.1364/ol.396950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Pissenberger, A., and G. Gritzner. "Preparation and properties of niobia- and tantala-doped orthorhombic zirconia." Journal of Materials Science Letters 14, no. 22 (1995): 1580–82. http://dx.doi.org/10.1007/bf00455421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Lu, Q., P. Skeldon, G. E. Thompson, D. Masheder, H. Habazaki, and K. Shimizu. "Transport numbers of metal and oxygen species in anodic tantala." Corrosion Science 46, no. 11 (2004): 2817–24. http://dx.doi.org/10.1016/j.corsci.2004.03.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Alcalá, G., P. Skeldon, G. E. Thompson, A. B. Mann, H. Habazaki, and K. Shimizu. "Mechanical properties of amorphous anodic alumina and tantala films using nanoindentation." Nanotechnology 13, no. 4 (2002): 451–55. http://dx.doi.org/10.1088/0957-4484/13/4/302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Willemsen, Thomas, Marco Jupé, Laurent Gallais, Dominic Tetzlaff, and Detlev Ristau. "Tunable optical properties of amorphous Tantala layers in a quantizing structure." Optics Letters 42, no. 21 (2017): 4502. http://dx.doi.org/10.1364/ol.42.004502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Abdul-Jabbar, Najeb M., Abel N. Fernandez, R. Wesley Jackson, Daesung Park, William D. Summers, and Carlos G. Levi. "Interactions between zirconia–yttria–tantala thermal barrier oxides and silicate melts." Acta Materialia 185 (February 2020): 171–80. http://dx.doi.org/10.1016/j.actamat.2019.11.060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

BRUTCHEY, R., C. LUGMAIR, L. SCHEBAUM, and T. TILLEY. "Thermolytic conversion of a bis(alkoxy)tris(siloxy)tantalum(V) single-source molecular precursor to catalytic tantala–silica materials." Journal of Catalysis 229, no. 1 (2005): 72–81. http://dx.doi.org/10.1016/j.jcat.2004.10.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Abernathy, Matthew R., Gregory M. Harry, Flavio Travasso, et al. "The effects of heating on mechanical loss in tantala/silica optical coatings." Physics Letters A 372, no. 2 (2008): 87–90. http://dx.doi.org/10.1016/j.physleta.2007.07.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Sun, Y., M. S. W. Vong, and P. A. Sermon. "Sol-gel chemistry of tantala HR coatings: Structure and laser-damage resistance." Journal of Sol-Gel Science and Technology 8, no. 1-3 (1997): 493–97. http://dx.doi.org/10.1007/bf02436888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Abou Sekkina, M. M., M. A. Ewaida, E. M. Ibrahim, and A. A. Al-Adawy. "Investigations of microstructural changes and spectral characteristics of tantala stabilized zirconia refractories." Polymer Degradation and Stability 19, no. 3 (1987): 273–78. http://dx.doi.org/10.1016/0141-3910(87)90060-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ewaida, M. A., M. M. Abou Sekkina, E. M. Ebrahim, and A. A. Al-Adawy. "Novel studies on the thermoelectro-mechanical properties of tantala-doped zirconia refractories." Polymer Degradation and Stability 21, no. 3 (1988): 227–35. http://dx.doi.org/10.1016/0141-3910(88)90029-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Lalande, Émile, Alexandre W. Lussier, Carl Lévesque, et al. "Zirconia-titania-doped tantala optical coatings for low mechanical loss Bragg mirrors." Journal of Vacuum Science & Technology A 39, no. 4 (2021): 043416. http://dx.doi.org/10.1116/6.0001074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kim, Namjun, and Jonathan F. Stebbins. "Structure of Amorphous Tantalum Oxide and Titania-Doped Tantala:17O NMR Results for Sol–Gel and Ion-Beam-Sputtered Materials." Chemistry of Materials 23, no. 15 (2011): 3460–65. http://dx.doi.org/10.1021/cm200630m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Sarraf, Masoud, Ali Dabbagh, Bushroa Abdul Razak, et al. "Silver oxide nanoparticles-decorated tantala nanotubes for enhanced antibacterial activity and osseointegration of Ti6Al4V." Materials & Design 154 (September 2018): 28–40. http://dx.doi.org/10.1016/j.matdes.2018.05.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Minagar, Sepideh, Christopher Berndt, and Cuie Wen. "Fabrication and Characterization of Nanoporous Niobia, and Nanotubular Tantala, Titania and Zirconia via Anodization." Journal of Functional Biomaterials 6, no. 2 (2015): 153–70. http://dx.doi.org/10.3390/jfb6020153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Bassiri, Riccardo, Matthew R. Abernathy, Franklin Liou, et al. "Order, disorder and mixing: The atomic structure of amorphous mixtures of titania and tantala." Journal of Non-Crystalline Solids 438 (April 2016): 59–66. http://dx.doi.org/10.1016/j.jnoncrysol.2016.02.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Hartshorn, Richard, Samantha Stockwell, Maxim Lebedev, and Susan Krumdieck. "Precursor system for bio-integration ceramics and deposition onto tantala scaffold bone interface surfaces." Surface and Coatings Technology 201, no. 22-23 (2007): 9413–16. http://dx.doi.org/10.1016/j.surfcoat.2007.04.042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Bassiri, Riccardo, Franklin Liou, Matthew R. Abernathy, et al. "Order within disorder: The atomic structure of ion-beam sputtered amorphous tantala (a-Ta2O5)." APL Materials 3, no. 3 (2015): 036103. http://dx.doi.org/10.1063/1.4913586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lu, Q., G. Alcalá, P. Skeldon, et al. "Porous tantala and alumina films from non-thickness limited anodising in phosphate/glycerol electrolyte." Electrochimica Acta 48, no. 1 (2002): 37–42. http://dx.doi.org/10.1016/s0013-4686(02)00545-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Yang, Le, Emmett Randel, Gabriele Vajente, et al. "Modifications of ion beam sputtered tantala thin films by secondary argon and oxygen bombardment." Applied Optics 59, no. 5 (2020): A150. http://dx.doi.org/10.1364/ao.59.00a150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Abernathy, Matthew R., James Hough, Iain W. Martin, et al. "Investigation of the Young’s modulus and thermal expansion of amorphous titania-doped tantala films." Applied Optics 53, no. 15 (2014): 3196. http://dx.doi.org/10.1364/ao.53.003196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Vajente, G., R. Birney, A. Ananyeva, et al. "Effect of elevated substrate temperature deposition on the mechanical losses in tantala thin film coatings." Classical and Quantum Gravity 35, no. 7 (2018): 075001. http://dx.doi.org/10.1088/1361-6382/aaad7c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Cook, Kevin S., Warren E. Piers, and Robert McDonald. "Synthesis and Chemistry of Zwitterionic Tantala-3-boratacyclopentenes: Olefin-like Reactivity of a Borataalkene Ligand." Journal of the American Chemical Society 124, no. 19 (2002): 5411–18. http://dx.doi.org/10.1021/ja025547n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Naga, S., M. Awaad, and A. Hassan. "THE EFFECT OF TANTALA AND NIOBIA ADDITION ON THE PHYSICAL AND MECHANICAL PROPERTIES OF ALUMINA CERAMICS." International Conference on Applied Mechanics and Mechanical Engineering 17, no. 17 (2016): 1–11. http://dx.doi.org/10.21608/amme.2016.35182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Sun, Y., P. A. Sermon, and M. S. W. Vong. "Design of reflective tantala optical coatings using sol-gel chemistry with ethanoic acid catalyst and chelator." Thin Solid Films 278, no. 1-2 (1996): 135–39. http://dx.doi.org/10.1016/0040-6090(95)08189-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Puosi, F., F. Fidecaro, S. Capaccioli, D. Pisignano, and D. Leporini. "Non-local cooperative atomic motions that govern dissipation in amorphous tantala unveiled by dynamical mechanical spectroscopy." Acta Materialia 201 (December 2020): 1–6. http://dx.doi.org/10.1016/j.actamat.2020.09.054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Tran, MinhPhuong, Erica B. Turner, Scott S. Segro, Li Fang, Emre Seyyal, and Abdul Malik. "Tantala-based sol-gel coating for capillary microextraction on-line coupled to high-performance liquid chromatography." Journal of Chromatography A 1522 (November 2017): 38–47. http://dx.doi.org/10.1016/j.chroma.2017.09.048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Hart, Martin J., Riccardo Bassiri, Konstantin B. Borisenko, et al. "Medium range structural order in amorphous tantala spatially resolved with changes to atomic structure by thermal annealing." Journal of Non-Crystalline Solids 438 (April 2016): 10–17. http://dx.doi.org/10.1016/j.jnoncrysol.2016.02.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Abbenhuis, Hendrikus C. L., David M. Grove, Guido P. M. van Mier, Gerard van Koten, and Anthony L. Spek. "Intramolecular amine coordination versus NMe C-H Activation: The stereoselective synthesis of a tantala(V)azacyclopropane complex." Recueil des Travaux Chimiques des Pays-Bas 109, no. 5 (2010): 361–63. http://dx.doi.org/10.1002/recl.19901090509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Tempez, A., S. Canulescu, I. S. Molchan, et al. "18 O/16 O isotopic separation in anodic tantala films by glow discharge time-of-flight mass spectrometry." Surface and Interface Analysis 41, no. 12-13 (2009): 966–73. http://dx.doi.org/10.1002/sia.3129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Pattanayak, Deepak K., Tomiharu Matsushita, Hiroaki Takadama, Tadashi Kokubo, and Takashi Nakamura. "Improvement of Apatite-Forming Ability of Tantalum Metal by CaCl2 Treatment." Key Engineering Materials 361-363 (November 2007): 681–84. http://dx.doi.org/10.4028/www.scientific.net/kem.361-363.681.

Full text
Abstract:
Tantalum metal was soaked in NaOH and CaCl2 solutions, and then subjected to heat treatment at 500°C. EDX analysis showed that about 6.5 at. % of Na was incorporated into the surface of the tantalum metal by the first NaOH treatment. These Na+ ions were replaced by Ca2+ ions by the subsequent CaCl2 treatment. According to TF-XRD patterns, an amorphous sodium tantalate was seemed to be formed on the tantalum metal by the NaOH treatment and transformed into amorphous calcium tantalate by the CaCl2 treatment. This phase was crystallized into Ca2Ta2O7 by heat treatment. Critical detaching load of the surface of the CaCl2-treated tantalum metal was as low as 5mN, while as high as 42mN after the heat treatment. Apatite-forming ability of the NaOH-treated tantalum metal in a simulated body fluid (SBF) was appreciably increased by the CaCl2 treatment and maintained even after the heat treatment.
APA, Harvard, Vancouver, ISO, and other styles
42

Abdul Majid, Rafdi, Sulaksana Permana, Johny Wahyuadi Soedarsono, et al. "Peningkatan Kadar Tantalum dan Niobium Oksida dari Terak Timah Bangka Menggunakan Pelarut NaOH dilanjutkan HNO3 dan H3PO4." Journal of Chemical Process Engineering 4, no. 2 (2019): 83–89. http://dx.doi.org/10.33536/jcpe.v4i2.468.

Full text
Abstract:
Terak Timah merupakan produk samping dari proses peleburan timah yang mengandung unsur logam tantalum dan niobium. Beberapa sumber unsur tantalum dan niobium yaitu columbite, tantalite, tantalo-columbite, dll. Tantalum & niobium memiliki banyak aplikasi seperti industri pesawat terbang, elektronik dan super alloy. Penelitian ini dilakukan untuk meningkatkan kadar unsur logam tantalum dan niobium dari terak timah melalui proses pelindian asam maupun basa. Hasil penelitian menunjukan bahwa proses pemanggangan yang dilakukan tidak mengalami dekomposisi thermal, selanjutnya proses pelindian basa dengan NaOH mengakibatkan penurunan yang sangat kecil terhadap niobium yaitu dari 0,75 menjadi 0,73%, sedangkan proses pelindian dengan HNO3 dan H3PO4 memberikan peningkatan terhadap tantalum dan niobium yaitu dengan HNO3 2M menghasilkan Ta dan Nb berturut-turut 0,17 menjadi 0,85 dan 0,73 menjadi 1,49. Hal ini juga terlihat pada pelindian menggunakan campuran HNO3: H3PO4 menghasilkan peningkatan Ta dan Nb berturut-turut menjadi 0,88-0,9% dan 1,46-1,54% di setiap peningkatan variasi konsentrasi H3PO4
APA, Harvard, Vancouver, ISO, and other styles
43

Molchan, I. S., G. E. Thompson, P. Skeldon, N. Trigoulet, A. Tempez, and P. Chapon. "Analysis of thin impurity doped layers in anodic alumina and anodic tantala films by glow discharge time-of-flight mass spectrometry." Transactions of the IMF 88, no. 3 (2010): 154–57. http://dx.doi.org/10.1179/174591910x12692576434617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ono, Satomi, and Shin-ichi Hirano. "Processing of highly oriented lithium tantalate films by chemical solution deposition." Journal of Materials Research 17, no. 10 (2002): 2532–39. http://dx.doi.org/10.1557/jmr.2002.0368.

Full text
Abstract:
The synthesis of lithium tantalate films by a chemical solution deposition method was studied. A precursor solution was prepared by dissolving lithium ethoxide and tantalum pentaethoxide in ethanol. The addition of formic acid to this precursor solution was very effective in the preparation of homogeneous and transparent precursor films on substrates by spin coating. Lithium tantalate films crystallized on sapphire (001) substrates with a highly preferred orientation along the c axis with heat-treating at temperatures above 450 °C. The refractive index of the film prepared at 550 °C was 2.049, which is close to the value for single crystals of lithium tantalate (2.176).
APA, Harvard, Vancouver, ISO, and other styles
45

Singh, Raj P., Michael J. Miller, and Jeffrey N. Dann. "X-ray diffraction analysis of (Na0.6H0.4)(Ta0.7Nb0.3)O3." Powder Diffraction 14, no. 3 (1999): 231–33. http://dx.doi.org/10.1017/s0885715600010587.

Full text
Abstract:
(Na0.6H0.4)(Ta0.7Nb0.3)O3 was synthesized by heating a tantalum/niobium scale containing two sodium tantalate/niobate phases :Na14(Ta0.7Nb0.3)12O37·31H2O and NaH2Ta0.7Nb0.3O4. Powder X-ray diffraction data for (Na0.6H0.4)(Ta0.7Nb0.3)O3 indicated it to be a cubic perovskite (ABO3/ReO3 type structure) with unit cell a0=3.894 Å. The compound is analogous to the mineral lueshite (NaNbO3), and to the high temperature forms of NaTaO3 and NaNbO3. Powder diffraction data for (Na0.6H0.4)(Ta0.7Nb0.3)O3 will be useful in the analysis of synthetic tantalum/niobium concentrates.
APA, Harvard, Vancouver, ISO, and other styles
46

Beskin, S. M., and Yu B. Marin. "Comprehensive systematics of tantalum and tantalo-niobium deposits." Geology of Ore Deposits 58, no. 7 (2016): 536–41. http://dx.doi.org/10.1134/s1075701516070023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Flanigan, Patrick, Varun R. Kshettry, and Edward C. Benzel. "World War II, tantalum, and the evolution of modern cranioplasty technique." Neurosurgical Focus 36, no. 4 (2014): E22. http://dx.doi.org/10.3171/2014.2.focus13552.

Full text
Abstract:
Cranioplasty is a unique procedure with a rich history. Since ancient times, a diverse array of materials from coconut shells to gold plates has been used for the repair of cranial defects. More recently, World War II greatly increased the demand for cranioplasty procedures and renewed interest in the search for a suitable synthetic material for cranioprostheses. Experimental evidence revealed that tantalum was biologically inert to acid and oxidative stresses. In fact, the observation that tantalum did not absorb acid resulted in the metal being named after Tantalus, the Greek mythological figure who was condemned to a pool of water in the Underworld that would recede when he tried to take a drink. In clinical use, malleability facilitated a single-stage cosmetic repair of cranial defects. Tantalum became the preferred cranioplasty material for more than 1000 procedures performed during World War II. In fact, its use was rapidly adopted in the civilian population. During World War II and the heyday of tantalum cranioplasty, there was a rapid evolution in prosthesis implantation and fixation techniques significantly shaping how cranioplasties are performed today. Several years after the war, acrylic emerged as the cranioplasty material of choice. It had several clear advantages over its metallic counterparts. Titanium, which was less radiopaque and had a more optimal thermal conductivity profile (less thermally conductive), eventually supplanted tantalum as the most common metallic cranioplasty material. While tantalum cranioplasty was popular for only a decade, it represented a significant breakthrough in synthetic cranioplasty. The experiences of wartime neurosurgeons with tantalum cranioplasty played a pivotal role in the evolution of modern cranioplasty techniques and ultimately led to a heightened understanding of the necessary attributes of an ideal synthetic cranioplasty material. Indeed, the history of tantalum cranioplasty serves as a model for innovative thinking and adaptive technology development.
APA, Harvard, Vancouver, ISO, and other styles
48

Li, Ai Dong, Hai Fa Zhai, Ji Zhou Kong, and Di Wu. "Ferroelectric and Photocatalytical Properties of Ta-Based and Nb-Based Oxide Ceramics and Powders from Environmentally Friendly Water-Soluble Tantalum and Niobium Precursors." Materials Science Forum 654-656 (June 2010): 2029–32. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.2029.

Full text
Abstract:
Due to the great potentials of tantalite and niobate materials in ferroelectric and photocatalytic applications, development of proper tantalum or niobium precursors is urgently need. In this work, a simple novel route to synthesize environmentally friendly aqueous tantalum and niobium precursors has been developed using cheap and stable Nb2O5 or Ta2O5 as starting source. Using home-made Ta and Nb precursors, several photocatalytic nanopowders such as BiNbO4 and BiTaO4, and ferroelectric ceramics such as 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-PT), have been prepared by a modified PC method. These powders and ceramics from polymeric precursors have low crystalline temperature and transformation temperature with uniform grain distribution, compared to conventional solid phase reaction (SSR). Pure triclinic phase of BiNbO4 powders can be obtained at 700°C instead of 1020°C of SSR, with excellent photodegradation activity of methyl violet. PC-derived PMN-PT ceramics also exhibit better ferroelectric and piezoelectric properties. All these indicate that this is an attractive and flexible approach using environmentally friendly water-soluble tantalum and niobium precursors for fabrication of tantalate and nibonate functional materials.
APA, Harvard, Vancouver, ISO, and other styles
49

Hu, Likun, Sicheng Yuan, Panping Xie, et al. "Formation of Corrosion Resistant Hard Coating of Litao3 by Anodizing in Molten Lino3." Innovations in Corrosion and Materials Science (Formerly Recent Patents on Corrosion Science) 9, no. 1 (2019): 50–59. http://dx.doi.org/10.2174/2352094909666190211125527.

Full text
Abstract:
Background: Lithium tantalate (LiTaO3) thin film was synthesized and in situ coated on tantalum substrate via anodic oxidation. Methods: The effects of temperature, voltage and time on composition, morphology and hardness of film were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Vickers hardness, respectively. Results: Our results showed that surface hardness of all coated samples has been increased compared with that of pure tantalum. The value of hardness was found to gradually increase with temperature, voltage and reaction time of the coating process. Selected specimens, after coating, were immersed into 10 wt% NaOH solution at 50oC for 96h to explore their anti-corrosion performance. Immersing results indicated that LiTaO3 coated samples have a smaller mass loss and corrosion rate compared to those of pure Ta substrate. Pure tantalum sample and those coated by LiTaO3 thin film were further examined by electrochemical methods including open-circuit potential (OCP), potentiodynamic polarization curves and electrochemical impedance spectra (EIS). Conclusion: We have found that samples coated with LiTaO3 thin film exhibit higher potentials and lower corrosion current densities than those of pure tantalum substrate, according to the results and analysis of OCP curves and potentiodynamic polarization curves. Upon anodic oxidation, samples display higher polarization resistance with higher resistance to corrosion.
APA, Harvard, Vancouver, ISO, and other styles
50

Masloboeva, Sofia M., Mikhail N. Palatnikov, and Larisa G. Arutyunyan. "A New Synthesis Method for Lithium Tantalate Charge Doped with Rare-Earth Elements." Solid State Phenomena 310 (September 2020): 53–57. http://dx.doi.org/10.4028/www.scientific.net/ssp.310.53.

Full text
Abstract:
A method was developed for synthesis of a single phase lithium tantalate charge doped by rare earth elements (TR) from highly pure solutions containing tantalum. The method is based on obtaining and thermal treatment of citrate precursor containing Li, Ta and TR. Charge samples were obtained due to suggested technological scheme; the dopant had given concentration and was chemically uniformly distributed. The charge can be applied both in single crystal growing technology and at obtaining of functional ceramics based on LiTaO3:TR.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography