Dissertations / Theses on the topic 'Tantalnitrid'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 16 dissertations / theses for your research on the topic 'Tantalnitrid.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Walther, Tillmann. "Beeinflussung funktionaler Schichteigenschaften bei der thermischen Atomlagenabscheidung von Tantalnitrid sowie Ruthenium." Master's thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-167301.
Full textThermal ALD with the precursors TBTDET and TBTEMT, NH3 as the second reactant and Ar as inert purging gas was studied. For measuring purposes time-resolved in-situ spectroscopic ellipsometry with an data acquisition rate of 0,86 data points/s, in-vacuo XPS and AFM was used. It was possible to deposit very smmoth homogenous closed TaN thin films with a Ta:N rate of about 0,6, contaminations of 5 at.% (TBTDET) and 9 at.% (TBTEMT), respectively, and a GPC of about 0,6 nm/Zyklus. An O3 pretreatment of a SiO2 surface accelerated the initial phase of the TaN atomic layer deposition (ALD) deposition. These TaN-Schichten were very reactiv against O2
Waechtler, Thomas, Bernd Gruska, Sven Zimmermann, Stefan E. Schulz, and Thomas Gessner. "Optical Properties of Sputtered Tantalum Nitride Films Determined by Spectroscopic Ellipsometry." Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200600325.
Full textKlemm, Denis. "Analyse dünner Schichten mit der optischen Glimmentladungsspektroskopie." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-23780.
Full textKlemm, Denis. "Analyse dünner Schichten mit der optischen Glimmentladungsspektroskopie." Doctoral thesis, Technische Universität Dresden, 2008. https://tud.qucosa.de/id/qucosa%3A25086.
Full textGanin, Alexey. "Plasma-unterstützte Herstellung von Übergangsmetallnitriden." [S.l. : s.n.], 2005.
Find full textWaechtler, Thomas, Bernd Gruska, Sven Zimmermann, Stefan E. Schulz, and Thomas Gessner. "Characterization of Sputtered Ta and TaN Films by Spectroscopic Ellipsometry." Universitätsbibliothek Chemnitz, 2007. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200701043.
Full text©2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Baumann, Jens. "Herstellung, Charakterisierung und Bewertung leitfähiger Diffusionsbarrieren auf Basis von Tantal, Titan und Wolfram für die Kupfermetallisierung von Siliciumschaltkreisen." Doctoral thesis, Universitätsbibliothek Chemnitz, 2004. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200400653.
Full textZusammenfassung (detusch): Die Arbeit beschreibt das Potential von Schichten des Ta, Ti, W und ihrer Nitride zur Unterdrückung kupferinduzierter Degradationen im Kontakt zu Silicium. Mögliche Wechselwirkungen zwischen Cu und den im Herstellungsprozess sowie der Lebensdauer von Schaltkreisen präsenten Gasen und Feststoffen werden zusammengestellt. Für das System Cu-Si sind als Degradationsmechanismen die Lösung von Cu und die Cu3Si Bildung zu erwarten. Die Anforderungen an die zur Unterdrückung der Degradationen notwendigen leitfähigen Diffusionsbarrieren werden diskutiert. Ihr spezifischer elektrischer Widerstand als wichtigstes Kriterium für die Integration wird vom Einsatzort bestimmt. Er muss für Kontakte unter 100 mOhm cm und für Vias unter 2000 mikroOhmcm liegen. Diffusionsbarrieren können von den zu trennenden Materialien durch Diffusion überwunden oder durch Reaktion (reaktive Diffusion) aufgezehrt werden. Damit kann in passive und Opferbarrieren unterschieden werden. Die Schichtherstellung erfolgt mit dem Verfahren der Magnetronzerstäubung in Ar oder Ar/N2 Atmosphäre. Sie werden hinsichtlich ihrer Zusammensetzung, Phase/Struktur sowie resultierender elektrischer, optischer und mechanischer Eigenschaften charakterisiert. Das Auftreten neuer Phasen korreliert mit Verlaufsänderungen einfach zugänglicher Prozessparameter wie Targetspannung und Kondensationsrate. Alle Schichten mit Ausnahme eines engen Prozessfensters für amorphes/nanokristallines WNx sind polykristallin. Der Einfluss von Temperungen in verschiedenen Medien wird untersucht. Amorphe/nanokristalline WNx Schichten rekristallisieren während Temperung. Für direkten Kontakt Cu zu Si führt ausreichende Energiezufuhr schon während der Abscheidung oder während nachfolgender Temperung (T> 200 °C) zur Cu3Si Bildung. Das Potential der Diffusionsbarrieren zur Unterdrückung dieser Reaktion wird für unterschiedliche Dicken und Stickstoffgehalte nach Temperungen bis maximal 650 °C untersucht. Dazu werden analytische Methoden, Schichtwiderstandsmessungen und Sperrstromdichtemessungen an pn, np und Schottkydioden eingesetzt. Die Diffusionsbarrieren können die Cu3Si Bildung unterdrücken, bis sie selbst durch Silicierung und/oder intermetallische Phasenbildung aufgezehrt sind. Die Nitride der Metalle sind thermisch stabiler, weil Metall Stickstoff Bindungen erst aufgebrochen werden müssen. Mit dem Versagen der Barrieren treffen Cu und Si zusammen - mit der Folge der Kupfersilicidbildung. Sie kann grossflächig oder in Form mikrometergrosser und einige 100 mikrometer voneinander entfernt liegender Kristallite stattfinden. Für beide Degradationsmechanismen kann gezeigt werden, dass eine Barrierebewertung für unterschiedliche Methoden paradoxe Ergebnisse liefern kann. Die Cu Diffusion über die Diffusionsbarriere in das Si kann mit analytischen Methoden schon vor der Cu3Si Bildung nachgewiesen werden. Der Sperrstrom von pn oder Schottkydioden wird dadurch nicht bzw. nicht eindeutig verändert. Er reagiert erst, wenn sie durch Cu3Si Wachstum kurzgeschlossen sind. Ergebnisse parallel präparierter Referenzen mit Al Metallisierung belegen, dass die Diffusionsbarrieren gegen Cu gleich oder besser wirken als gegen Al
Baumann, Jens. "Herstellung, Charakterisierung und Bewertung leitfähiger Diffusionsbarrieren auf Basis von Tantal, Titan und Wolfram für die Kupfermetallisierung von Siliciumschaltkreisen." Doctoral thesis, 3-8322-2532-3, 1995. https://monarch.qucosa.de/id/qucosa%3A18149.
Full textZusammenfassung (detusch): Die Arbeit beschreibt das Potential von Schichten des Ta, Ti, W und ihrer Nitride zur Unterdrückung kupferinduzierter Degradationen im Kontakt zu Silicium. Mögliche Wechselwirkungen zwischen Cu und den im Herstellungsprozess sowie der Lebensdauer von Schaltkreisen präsenten Gasen und Feststoffen werden zusammengestellt. Für das System Cu-Si sind als Degradationsmechanismen die Lösung von Cu und die Cu3Si Bildung zu erwarten. Die Anforderungen an die zur Unterdrückung der Degradationen notwendigen leitfähigen Diffusionsbarrieren werden diskutiert. Ihr spezifischer elektrischer Widerstand als wichtigstes Kriterium für die Integration wird vom Einsatzort bestimmt. Er muss für Kontakte unter 100 mOhm cm und für Vias unter 2000 mikroOhmcm liegen. Diffusionsbarrieren können von den zu trennenden Materialien durch Diffusion überwunden oder durch Reaktion (reaktive Diffusion) aufgezehrt werden. Damit kann in passive und Opferbarrieren unterschieden werden. Die Schichtherstellung erfolgt mit dem Verfahren der Magnetronzerstäubung in Ar oder Ar/N2 Atmosphäre. Sie werden hinsichtlich ihrer Zusammensetzung, Phase/Struktur sowie resultierender elektrischer, optischer und mechanischer Eigenschaften charakterisiert. Das Auftreten neuer Phasen korreliert mit Verlaufsänderungen einfach zugänglicher Prozessparameter wie Targetspannung und Kondensationsrate. Alle Schichten mit Ausnahme eines engen Prozessfensters für amorphes/nanokristallines WNx sind polykristallin. Der Einfluss von Temperungen in verschiedenen Medien wird untersucht. Amorphe/nanokristalline WNx Schichten rekristallisieren während Temperung. Für direkten Kontakt Cu zu Si führt ausreichende Energiezufuhr schon während der Abscheidung oder während nachfolgender Temperung (T> 200 °C) zur Cu3Si Bildung. Das Potential der Diffusionsbarrieren zur Unterdrückung dieser Reaktion wird für unterschiedliche Dicken und Stickstoffgehalte nach Temperungen bis maximal 650 °C untersucht. Dazu werden analytische Methoden, Schichtwiderstandsmessungen und Sperrstromdichtemessungen an pn, np und Schottkydioden eingesetzt. Die Diffusionsbarrieren können die Cu3Si Bildung unterdrücken, bis sie selbst durch Silicierung und/oder intermetallische Phasenbildung aufgezehrt sind. Die Nitride der Metalle sind thermisch stabiler, weil Metall Stickstoff Bindungen erst aufgebrochen werden müssen. Mit dem Versagen der Barrieren treffen Cu und Si zusammen - mit der Folge der Kupfersilicidbildung. Sie kann grossflächig oder in Form mikrometergrosser und einige 100 mikrometer voneinander entfernt liegender Kristallite stattfinden. Für beide Degradationsmechanismen kann gezeigt werden, dass eine Barrierebewertung für unterschiedliche Methoden paradoxe Ergebnisse liefern kann. Die Cu Diffusion über die Diffusionsbarriere in das Si kann mit analytischen Methoden schon vor der Cu3Si Bildung nachgewiesen werden. Der Sperrstrom von pn oder Schottkydioden wird dadurch nicht bzw. nicht eindeutig verändert. Er reagiert erst, wenn sie durch Cu3Si Wachstum kurzgeschlossen sind. Ergebnisse parallel präparierter Referenzen mit Al Metallisierung belegen, dass die Diffusionsbarrieren gegen Cu gleich oder besser wirken als gegen Al.
Baumann, Jens. "Herstellung, Charakterisierung und Bewertung leitfähiger Diffusionsbarrieren auf Basis von Tantal, Titan und Wolfram für die Kupfermetallisierung von Siliciumschaltkreisen." Aachen Shaker, 2004. http://archiv.tu-chemnitz.de/pub/2004/0072.
Full textWaechtler, Thomas, Nina Roth, Robert Mothes, Steffen Schulze, Stefan E. Schulz, Thomas Gessner, Heinrich Lang, and Michael Hietschold. "Copper Oxide ALD from a Cu(I) -Diketonate: Detailed Growth Studies on SiO2 and TaN." Universitätsbibliothek Chemnitz, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200901741.
Full text© 2009 The Electrochemical Society. All rights reserved.
Wächtler, Thomas. "Thin Films of Copper Oxide and Copper Grown by Atomic Layer Deposition for Applications in Metallization Systems of Microelectronic Devices." Doctoral thesis, Universitätsbibliothek Chemnitz, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201000725.
Full textKupferbasierte Mehrlagenmetallisierungssysteme in heutigen hochintegrierten elektronischen Schaltkreisen erfordern die Herstellung von Diffusionsbarrieren und leitfähigen Keimschichten für die galvanische Metallabscheidung. Diese Schichten von nur wenigen Nanometern Dicke müssen konform und fehlerfrei in strukturierten Dielektrika abgeschieden werden. Die sich abzeichnende weitere Verkleinerung der geometrischen Dimensionen des Leitbahnsystems erfordert Beschichtungstechnologien, die vorhandene Nachteile der bisher etablierten Physikalischen Dampfphasenabscheidung beheben. Die Methode der Atomlagenabscheidung (ALD) ermöglicht es, Schichten im Nanometerbereich sowohl auf dreidimensional strukturierten Objekten als auch auf großflächigen Substraten gleichmäßig herzustellen. Die vorliegende Arbeit befasst sich daher mit der Entwicklung eines ALD-Prozesses zur Abscheidung von Kupferoxidschichten, ausgehend von der metallorganischen Vorstufe Bis(tri-n-butylphosphan)kupfer(I)acetylacetonat [(nBu3P)2Cu(acac)]. Dieses flüssige, nichtfluorierte β-Diketonat wird bei Temperaturen zwischen 100 und 160°C mit einer Mischung aus Wasserdampf und Sauerstoff zur Reaktion gebracht. ALD-typisches Schichtwachstum stellt sich in Abhängigkeit des gewählten Substrats zwischen 100 und 130°C ein. Auf Tantalnitrid- und Siliziumdioxidsubstraten werden dabei sehr glatte Schichten bei gesättigtem Wachstumsverhalten erhalten. Auch auf Rutheniumsubstraten werden gute Abscheideergebnisse erzielt, jedoch kommt es hier zu einer merklichen Durchmischung des ALD-Kupferoxids mit dem Untergrund. Tantalsubstrate führen zu einer schnellen Selbstzersetzung des Kupferprecursors, in dessen Folge neben geschlossenen Schichten während der ALD auch immer isolierte Keime oder größere Partikel erhalten werden. Die mittels ALD gewachsenen Kupferoxidschichten können in Gasphasenprozessen zu Kupfer reduziert werden. Wird Ameisensäure als Reduktionsmittel genutzt, können diese Prozesse bereits bei ähnlichen Temperaturen wie die ALD durchgeführt werden, so dass Agglomeration der Schichten weitgehend verhindert wird. Als besonders vorteilhaft für die Ameisensäure-Reduktion erweisen sich Rutheniumsubstrate. Auch für eine Integration mit nachfolgenden Galvanikprozessen zur Abscheidung von Kupfer zeigen sich Vorteile der Kombination ALD-Kupfer/Ruthenium, insbesondere hinsichtlich der Qualität der erhaltenen galvanischen Schichten und deren Füllverhalten in Leitbahnstrukturen. Der entwickelte ALD-Prozess besitzt darüber hinaus Potential zur Integration mit Kohlenstoffnanoröhren
Waechtler, Thomas, Steffen Oswald, Nina Roth, Heinrich Lang, Stefan E. Schulz, and Thomas Gessner. "ALD of Copper and Copper Oxide Thin Films For Applications in Metallization Systems of ULSI Devices." Universitätsbibliothek Chemnitz, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200800914.
Full textAs a possible alternative for growing seed layers required for electrochemical Cu deposition of metallization systems in ULSI circuits, the atomic layer deposition (ALD) of Cu is under consideration. To avoid drawbacks related to plasma-enhanced ALD (PEALD), thermal growth of Cu has been proposed by two-step processes forming copper oxide films by ALD which are subsequently reduced.
This talk, given at the 8th International Conference on Atomic Layer Deposition (ALD 2008), held in Bruges, Belgium from 29 June to 2 July 2008, summarizes the results of thermal ALD experiments from [(nBu3P)2Cu(acac)] precursor and wet O2. The precursor is of particular interest as it is a liquid at room temperature and thus easier to handle than frequently utilized solids such as Cu(acac)2, Cu(hfac)2 or Cu(thd)2. Furthermore the substance is non-fluorinated, which helps avoiding a major source of adhesion issues repeatedly observed in Cu CVD.
As result of the ALD experiments, we obtained composites of metallic and oxidized Cu on Ta and TaN, which was determined by angle-resolved XPS analyses. While smooth, adherent films were grown on TaN in an ALD window up to about 130°C, cluster-formation due to self-decomposition of the precursor was observed on Ta. We also recognized a considerable dependency of the growth on the degree of nitridation of the TaN. In contrast, smooth films could be grown up to 130°C on SiO2 and Ru, although in the latter case the ALD window only extends to about 120°C. To apply the ALD films as seed layers in subsequent electroplating processes, several reduction processes are under investigation. Thermal and plasma-assisted hydrogen treatments are studied, as well as thermal treatments in vapors of isopropanol, formic acid, and aldehydes. So far these attempts were most promising using formic acid at temperatures between 100 and 120°C, also offering the benefit of avoiding agglomeration of the very thin ALD films on Ta and TaN. In this respect, the process sequence shows potential for depositing ultra-thin, smooth Cu films at temperatures below 150°C.
Waechtler, Thomas, Steffen Schulze, Lutz Hofmann, Sascha Hermann, Nina Roth, Stefan E. Schulz, Thomas Gessner, Heinrich Lang, and Michael Hietschold. "Detailed Study of Copper Oxide ALD on SiO2, TaN, and Ru." Universitätsbibliothek Chemnitz, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200901295.
Full textWächtler, Thomas. "Thin Films of Copper Oxide and Copper Grown by Atomic Layer Deposition for Applications in Metallization Systems of Microelectronic Devices." Doctoral thesis, Universitätsverlag der Technischen Universität Chemnitz, 2009. https://monarch.qucosa.de/id/qucosa%3A19323.
Full textKupferbasierte Mehrlagenmetallisierungssysteme in heutigen hochintegrierten elektronischen Schaltkreisen erfordern die Herstellung von Diffusionsbarrieren und leitfähigen Keimschichten für die galvanische Metallabscheidung. Diese Schichten von nur wenigen Nanometern Dicke müssen konform und fehlerfrei in strukturierten Dielektrika abgeschieden werden. Die sich abzeichnende weitere Verkleinerung der geometrischen Dimensionen des Leitbahnsystems erfordert Beschichtungstechnologien, die vorhandene Nachteile der bisher etablierten Physikalischen Dampfphasenabscheidung beheben. Die Methode der Atomlagenabscheidung (ALD) ermöglicht es, Schichten im Nanometerbereich sowohl auf dreidimensional strukturierten Objekten als auch auf großflächigen Substraten gleichmäßig herzustellen. Die vorliegende Arbeit befasst sich daher mit der Entwicklung eines ALD-Prozesses zur Abscheidung von Kupferoxidschichten, ausgehend von der metallorganischen Vorstufe Bis(tri-n-butylphosphan)kupfer(I)acetylacetonat [(nBu3P)2Cu(acac)]. Dieses flüssige, nichtfluorierte β-Diketonat wird bei Temperaturen zwischen 100 und 160°C mit einer Mischung aus Wasserdampf und Sauerstoff zur Reaktion gebracht. ALD-typisches Schichtwachstum stellt sich in Abhängigkeit des gewählten Substrats zwischen 100 und 130°C ein. Auf Tantalnitrid- und Siliziumdioxidsubstraten werden dabei sehr glatte Schichten bei gesättigtem Wachstumsverhalten erhalten. Auch auf Rutheniumsubstraten werden gute Abscheideergebnisse erzielt, jedoch kommt es hier zu einer merklichen Durchmischung des ALD-Kupferoxids mit dem Untergrund. Tantalsubstrate führen zu einer schnellen Selbstzersetzung des Kupferprecursors, in dessen Folge neben geschlossenen Schichten während der ALD auch immer isolierte Keime oder größere Partikel erhalten werden. Die mittels ALD gewachsenen Kupferoxidschichten können in Gasphasenprozessen zu Kupfer reduziert werden. Wird Ameisensäure als Reduktionsmittel genutzt, können diese Prozesse bereits bei ähnlichen Temperaturen wie die ALD durchgeführt werden, so dass Agglomeration der Schichten weitgehend verhindert wird. Als besonders vorteilhaft für die Ameisensäure-Reduktion erweisen sich Rutheniumsubstrate. Auch für eine Integration mit nachfolgenden Galvanikprozessen zur Abscheidung von Kupfer zeigen sich Vorteile der Kombination ALD-Kupfer/Ruthenium, insbesondere hinsichtlich der Qualität der erhaltenen galvanischen Schichten und deren Füllverhalten in Leitbahnstrukturen. Der entwickelte ALD-Prozess besitzt darüber hinaus Potential zur Integration mit Kohlenstoffnanoröhren.
Waechtler, Thomas, Steffen Oswald, Nina Roth, Alexander Jakob, Heinrich Lang, Ramona Ecke, Stefan E. Schulz, et al. "Copper Oxide Films Grown by Atomic Layer Deposition from Bis(tri-n-butylphosphane)copper(I)acetylacetonate on Ta, TaN, Ru, and SiO2." Universitätsbibliothek Chemnitz, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200900734.
Full textEs wird die thermische Atomlagenabscheidung (ALD) von Kupferoxidschichten, ausgehend von der unfluorierten, flüssigen Vorstufenverbindung Bis(tri-n-butylphosphan)kupfer(I)acetylacetonat, [(nBu3P)2Cu(acac)], sowie feuchtem Sauerstoff, auf Ta-, TaN-, Ru- und SiO2-Substraten bei Temperaturen < 160°C berichtet. Typisches temperaturunabhängiges Wachstum wurde zumindest bis 125°C beobachtet. Damit verbunden wurde für die metallischen Substrate ein Zyklenwachstum von ca. 0.1 Å erzielt sowie ein ALD-Fenster, das für Ru bis zu einer Temperatur von 100°C reicht. Auf SiO2 und TaN wurde das ALD-Fenster zwischen 110 und 125°C beobachtet, wobei auch bei 135°C noch gesättigtes Wachstum auf TaN gezeigt werden konnte. Die selbständige Zersetzung des Precursors ähnlich der chemischen Gasphasenabscheidung führte zu einem bimodalen Schichtwachstum auf Ta, wodurch gleichzeitig geschlossene Schichten und voneinander isolierte Cluster gebildet wurden. Dieser Effekt wurde auf TaN bis zu einer Temperatur von 130°C nicht beobachtet. Ebensowenig trat er im untersuchten Temperaturbereich auf Ru oder SiO2 auf. Der Nitrierungsgrad der TaN-Schichten beeinflusste hierbei das Schichtwachstum stark. Mit einer sehr guten Haftung der ALD-Schichten auf allen untersuchten Substratmaterialien erscheinen die Ergebnisse vielversprechend für die ALD von Kupferstartschichten, die für die elektrochemische Kupfermetallisierung in Leitbahnsystemen ultrahochintegrierter Schaltkreise anwendbar sind
Walther, Tillmann. "Beeinflussung funktionaler Schichteigenschaften bei der thermischen Atomlagenabscheidung von Tantalnitrid sowie Ruthenium." Master's thesis, 2014. https://tud.qucosa.de/id/qucosa%3A27653.
Full textThermal ALD with the precursors TBTDET and TBTEMT, NH3 as the second reactant and Ar as inert purging gas was studied. For measuring purposes time-resolved in-situ spectroscopic ellipsometry with an data acquisition rate of 0,86 data points/s, in-vacuo XPS and AFM was used. It was possible to deposit very smmoth homogenous closed TaN thin films with a Ta:N rate of about 0,6, contaminations of 5 at.% (TBTDET) and 9 at.% (TBTEMT), respectively, and a GPC of about 0,6 nm/Zyklus. An O3 pretreatment of a SiO2 surface accelerated the initial phase of the TaN atomic layer deposition (ALD) deposition. These TaN-Schichten were very reactiv against O2.:1. Einleitung 1 I. Theorie 4 2. Anwendungsfelder von TaN & Ru-ALD-Dünnschichten 5 2.1. Anwendungsfelder von TaN ALD Dünnschichten 5 2.2. Anwendungsfelder von Ru ALD Dünnschichten 5 2.3. TaN/Ru-Schichtstapel als Cu-Diffusionsbarriere 6 3. Atomlagenabscheidung (ALD) 8 3.1. Idealisiertes Grundprinzip der ALD 8 3.2. Mögliche Nichtidealitäten eines ALD-Prozesses 10 3.3. Klassifikation von ALD-Prozessen 12 3.4. TaN-Abscheidung mithilfe eines thermischen TBTDET bzw. TBTEMT und NH3-Prozesses 13 3.5. Ru-Abscheidung mithilfe eines ALD-Prozesses 16 4. Grundlagen von Schichtcharakterisierungsmethoden 17 4.1. Spektroskopische Ellipsometrie (SE) 17 4.2. Röntgenphotonenelektronenspektroskopie (XPS) 19 4.3. Rasterkraftmikroskopie im nicht-Kontakt-Modus (non-contact AFM) 20 4.4. Vierspitzenprober (4PP) 21 II. Praxis 23 5. Experimentelle Methodik 24 5.1. ALD-Reaktor mit in-situ Ellipsometer und in-vacuo XPS und AFM/STM 24 5.1.1. Prozesskammer 24 5.1.2. In-situ Ellipsometer und in-vakuo Messtechnik 24 5.1.3. Bei ALD TaN-Prozessen verwendete Parameter 25 5.2. ALD-Reaktor mit Blitzlampenfeld für Blitz-ALD 26 5.3. Vorgehensweise bei der in-situ Ellipsometrie 27 5.3.1. Übersicht 27 5.3.2. Details zur Datenerfassung 29 5.3.3. Details zur optischen Modellierung 32 5.3.4. Datennachbearbeitung: Erstellung von ALD-Zyklus-Wachstums Diagrammen 40 5.3.5. Datennachbearbeitung: Extrahierung von Parametern aus ALDZyklus-Wachstums Diagrammen 41 5.3.6. Fehlerbetrachtung 43 5.4. Vorgehensweise bei XPS-Experimenten 43 5.5. Weitere verwendete ex-situ Messtechniken 45 5.6. O2-Aufnahme einer abgeschiedenen TaN-Schicht 46 6. Thermische ALD TaN Schichtuntersuchungen an iSE-ALD-Anlage 47 6.1. O3-Vorbehandlung 47 6.1.1. Einführung 47 6.1.2. Auswirkungen auf natives und thermisches SiO2 47 6.1.3. Temperatureinfluss 49 6.2. Analyse mithilfe von Präkursor TBTDET abgeschiedener thermischer ALD TaN Dünnschichten 50 6.2.1. Verwendete Prozessparameter 50 6.2.2. Initialer (heterogener) Wachstumsbereich 51 6.2.3. Linearer (homogener) Wachstumsbereich 52 6.2.4. CVD-Verhalten von TBTDET bei 160 und 210 C 55 6.2.5. Nachbehandlungen (Tempern und O2-Aufnahme) 56 6.2.6. Fazit 58 6.3. Analyse mithilfe von Präkursor TBTEMT abgeschiedener thermischer ALD TaN Dünnschichten 58 6.3.1. Initialer (heterogener) Wachstumsbereich 58 6.3.2. Linearer (homogener) Wachstumsbereich 60 6.3.3. Nachbehandlung mit O2 64 6.3.4. Fazit 64 6.4. Vergleich der Präkursoren TBTDET & TBTEMT für die thermische TaN-ALD 66 6.4.1. Einführung 66 6.4.2. Vergleich XPS-Ergebnisse & O2-Aufnahme 68 6.4.3. Vergleich iSE-Ergebnisse 68 6.4.4. Vergleich AFM-Ergebnisse 70 6.4.5. Fazit 70 7. Prozessentwicklung an Flash-ALD-Anlage 72 7.1. Einführung 72 7.2. Temperaturvariation 73 7.3. Pulszeitvariationen 74 7.4. Eigenzersetzung von TBTEMT (CVD-Abscheidung) 77 7.5. Zusammenfassung zur Prozessentwicklung 78 7.6. Erste Ergebnisse zum Blitzeinfluss 78 7.6.1. Einführung 78 7.6.2. Rauheit (AFM-Ergebnisse) 79 7.6.3. chemische Zusammensetzung(XPS-Ergebnisse) 80 8. Zusammenfassung und Ausblick 82 III. Anhang 84 A. XPS-Ergebnis von O2-Nachbehandlung mit Präkursor TBTEMT 85 Literaturverzeichnis 86