Journal articles on the topic 'Target binding'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Target binding.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Park, Keunwan, Young-Joon Ko, Prasannavenkatesh Durai, and Cheol-Ho Pan. "Machine learning-based chemical binding similarity using evolutionary relationships of target genes." Nucleic Acids Research 47, no. 20 (2019): e128-e128. http://dx.doi.org/10.1093/nar/gkz743.
Full textCheung, S. H., G. E. Legge, S. T. L. Chung, and B. S. Tjan. "Target-flanker binding releases crowding." Journal of Vision 6, no. 6 (2010): 807. http://dx.doi.org/10.1167/6.6.807.
Full textJOHNSTON, Angus, and Eva VAN DER MAREL. "How Binding are the EU’s ‘Binding’ Renewables Targets?" Cambridge Yearbook of European Legal Studies 18 (August 9, 2016): 176–214. http://dx.doi.org/10.1017/cel.2016.7.
Full textPOOLSAP, UNYANEE, YUKI KATO, KENGO SATO, and TATSUYA AKUTSU. "USING BINDING PROFILES TO PREDICT BINDING SITES OF TARGET RNAs." Journal of Bioinformatics and Computational Biology 09, no. 06 (2011): 697–713. http://dx.doi.org/10.1142/s0219720011005628.
Full textMolina, Daniel Martinez, Rozbeh Jafari, Marina Ignatushchenko, et al. "Monitoring Drug Target Engagement in Cells and Tissues Using the Cellular Thermal Shift Assay." Science 341, no. 6141 (2013): 84–87. http://dx.doi.org/10.1126/science.1233606.
Full textBriskin, Daniel, Peter Y. Wang, and David P. Bartel. "The biochemical basis for the cooperative action of microRNAs." Proceedings of the National Academy of Sciences 117, no. 30 (2020): 17764–74. http://dx.doi.org/10.1073/pnas.1920404117.
Full textKUMAR, YOGESH, and FEROZ KHAN. "Detection of aroma compound’s binding mode conformations on anticancer target DNA topoisomerase II." Journal of Medicinal and Aromatic Plant Sciences 40, no. 3 (2018): 40–48. http://dx.doi.org/10.62029/jmaps.v40i3.kumar.
Full textJadhav, Sagar Ashok, Payal Chavan, Supriya Suresh Shete, et al. "In Silico ADMET and Docking Study of Selected Drug Used in Therapy of COVID-19." Journal of Pharmaceutical Technology, Research and Management 10, no. 1 (2022): 47–73. http://dx.doi.org/10.15415/jptrm.2022.101006.
Full textTan, Zhixin Cyrillus, Brian T. Orcutt-Jahns, and Aaron S. Meyer. "A quantitative view of strategies to engineer cell-selective ligand binding." Integrative Biology 13, no. 11 (2021): 269–82. http://dx.doi.org/10.1093/intbio/zyab019.
Full textLipovsek, D. "Adnectins: engineered target-binding protein therapeutics." Protein Engineering Design and Selection 24, no. 1-2 (2010): 3–9. http://dx.doi.org/10.1093/protein/gzq097.
Full textLv, Shuang-Qing, Xin Zeng, Guang-Peng Su, Wen-Feng Du, Yi Li, and Meng-Liang Wen. "Improving Identification of Drug-Target Binding Sites Based on Structures of Targets Using Residual Graph Transformer Network." Biomolecules 15, no. 2 (2025): 221. https://doi.org/10.3390/biom15020221.
Full textLiao, Jianbo, Qinyu Wang, Fengxu Wu, and Zunnan Huang. "In Silico Methods for Identification of Potential Active Sites of Therapeutic Targets." Molecules 27, no. 20 (2022): 7103. http://dx.doi.org/10.3390/molecules27207103.
Full textMohebbi, Mohammad, Liang Ding, Russell L. Malmberg, Cory Momany, Khaled Rasheed, and Liming Cai. "Accurate prediction of human miRNA targets via graph modeling of the miRNA-target duplex." Journal of Bioinformatics and Computational Biology 16, no. 04 (2018): 1850013. http://dx.doi.org/10.1142/s0219720018500130.
Full textLee and Kim. "In-Silico Molecular Binding Prediction for Human Drug Targets Using Deep Neural Multi-Task Learning." Genes 10, no. 11 (2019): 906. http://dx.doi.org/10.3390/genes10110906.
Full textRobers, M. B., R. Friedman-Ohana, K. V. M. Huber, et al. "Quantifying Target Occupancy of Small Molecules Within Living Cells." Annual Review of Biochemistry 89, no. 1 (2020): 557–81. http://dx.doi.org/10.1146/annurev-biochem-011420-092302.
Full textSchulmeyer, Kayley H., Manisha R. Diaz, Thomas B. Bair, et al. "Primary and Secondary Sequence Structure Requirements for Recognition and Discrimination of Target RNAs by Pseudomonas aeruginosa RsmA and RsmF." Journal of Bacteriology 198, no. 18 (2016): 2458–69. http://dx.doi.org/10.1128/jb.00343-16.
Full textBandorowicz-Pikuła, J., M. Danieluk, A. Wrzosek, R. Buś, R. Buchet, and S. Pikuła. "Annexin VI: an intracellular target for ATP." Acta Biochimica Polonica 46, no. 3 (1999): 801–12. http://dx.doi.org/10.18388/abp.1999_4152.
Full textSchmidt, Denis, Magdalena M. Scharf, Dominique Sydow, et al. "Analyzing Kinase Similarity in Small Molecule and Protein Structural Space to Explore the Limits of Multi-Target Screening." Molecules 26, no. 3 (2021): 629. http://dx.doi.org/10.3390/molecules26030629.
Full textChen, Zihao, Long Hu, Bao-Ting Zhang, et al. "Artificial Intelligence in Aptamer–Target Binding Prediction." International Journal of Molecular Sciences 22, no. 7 (2021): 3605. http://dx.doi.org/10.3390/ijms22073605.
Full textGanotra, Gaurav K., and Rebecca C. Wade. "Prediction of Drug–Target Binding Kinetics by Comparative Binding Energy Analysis." ACS Medicinal Chemistry Letters 9, no. 11 (2018): 1134–39. http://dx.doi.org/10.1021/acsmedchemlett.8b00397.
Full textHenrich, Stefan, Isabella Feierberg, Ting Wang, Niklas Blomberg, and Rebecca C. Wade. "Comparative binding energy analysis for binding affinity and target selectivity prediction." Proteins: Structure, Function, and Bioinformatics 78, no. 1 (2009): 135–53. http://dx.doi.org/10.1002/prot.22579.
Full textKlimentová, Eva, Václav Hejret, Ján Krčmář, Katarína Grešová, Ilektra-Chara Giassa, and Panagiotis Alexiou. "miRBind: A Deep Learning Method for miRNA Binding Classification." Genes 13, no. 12 (2022): 2323. http://dx.doi.org/10.3390/genes13122323.
Full textSarmoko, Sarmoko, Afif Hariawan Pratama, Nur Amalia Choironi, and Muhammad Salman Fareza. "Bioinformatic Study of the Active Compound of Morusin in Mulberry (Morus alba) against Breast Cancer." Indonesian Journal of Cancer Chemoprevention 14, no. 1 (2023): 60. http://dx.doi.org/10.14499/indonesianjcanchemoprev14iss1pp60-71.
Full textXiong, Li, Junfeng Cao, Yixin Qiu, et al. "Exploring the Mechanism of Aspirin in the Treatment of Kawasaki Disease Based on Molecular Docking and Molecular Dynamics." Evidence-Based Complementary and Alternative Medicine 2022 (August 12, 2022): 1–11. http://dx.doi.org/10.1155/2022/9828518.
Full textKim, Minjee, and Young Bong Kim. "Uncovering Quercetin’s Effects against Influenza A Virus Using Network Pharmacology and Molecular Docking." Processes 9, no. 9 (2021): 1627. http://dx.doi.org/10.3390/pr9091627.
Full textSneha, Nandeshwar* Sapan Shah Rida Saiyad Nikita Gaikwad Pooja Wankhade. "In-Silico Evaluation of Flavone Derivatives for Cardioprotective Effects: A Comparative Molecular Docking Approach." International Journal of Pharmaceutical Sciences 3, no. 3 (2025): 2543–56. https://doi.org/10.5281/zenodo.15087478.
Full textJulio, Ashley R., and Keriann M. Backus. "New approaches to target RNA binding proteins." Current Opinion in Chemical Biology 62 (June 2021): 13–23. http://dx.doi.org/10.1016/j.cbpa.2020.12.006.
Full textKadonosono, Tetsuya. "A smart design of target-binding molecules." Japanese Journal of Pesticide Science 46, no. 2 (2021): 168–72. http://dx.doi.org/10.1584/jpestics.w21-33.
Full textHolmberg, Eric, Kazuo Maruyama, Stephen Kennel, et al. "Target-Specific Binding of Immunoliposomes in Vivo." Journal of Liposome Research 1, no. 4 (1990): 393–406. http://dx.doi.org/10.3109/08982109009036003.
Full textWu, Yung-Peng, Chee Ying Chew, Tian-Neng Li, et al. "Target-activated streptavidin–biotin controlled binding probe." Chemical Science 9, no. 3 (2018): 770–76. http://dx.doi.org/10.1039/c7sc04014h.
Full textGuhaThakurta, D., and G. D. Stormo. "Identifying target sites for cooperatively binding factors." Bioinformatics 17, no. 7 (2001): 608–21. http://dx.doi.org/10.1093/bioinformatics/17.7.608.
Full textÖztürk, Hakime, Arzucan Özgür, and Elif Ozkirimli. "DeepDTA: deep drug–target binding affinity prediction." Bioinformatics 34, no. 17 (2018): i821—i829. http://dx.doi.org/10.1093/bioinformatics/bty593.
Full textde la Rosa, Mario A. Diaz, Elena F. Koslover, Peter J. Mulligan, and Andrew J. Spakowitz. "Target-Site Search of DNA-Binding Proteins." Biophysical Journal 98, no. 3 (2010): 221a. http://dx.doi.org/10.1016/j.bpj.2009.12.1194.
Full textOğul, Hasan, Sinan U. Umu, Y. Yener Tuncel, and Mahinur S. Akkaya. "A probabilistic approach to microRNA-target binding." Biochemical and Biophysical Research Communications 413, no. 1 (2011): 111–15. http://dx.doi.org/10.1016/j.bbrc.2011.08.065.
Full textLoach, Daniel, and Paloma Marí-Beffa. "Post-target inhibition: A temporal binding mechanism?" Visual Cognition 10, no. 5 (2003): 513–26. http://dx.doi.org/10.1080/13506280244000203.
Full textDrwal, Malgorzata N., Guillaume Bret, and Esther Kellenberger. "Multi-target Fragments Display Versatile Binding Modes." Molecular Informatics 36, no. 10 (2017): 1700042. http://dx.doi.org/10.1002/minf.201700042.
Full textSmith, F. Donelson, Robert H. Pierce, Thomas Thisted, and Edward H. van der Horst. "Conditionally Active, pH-Sensitive Immunoregulatory Antibodies Targeting VISTA and CTLA-4 Lead an Emerging Class of Cancer Therapeutics." Antibodies 12, no. 3 (2023): 55. http://dx.doi.org/10.3390/antib12030055.
Full textYim, Hyung-Soon, and Jae-Hak Lee. "Prediction of Hypoxia-inducible Factor Binding Site in Whale Genome and Analysis of Target Genes Regulated by Predicted Sites." Journal of Marine Bioscience and Biotechnology 7, no. 2 (2015): 35–41. http://dx.doi.org/10.15433/ksmb.2015.7.2.035.
Full textRe, Suyong, Hiraku Oshima, Kento Kasahara, Motoshi Kamiya, and Yuji Sugita. "Encounter complexes and hidden poses of kinase-inhibitor binding on the free-energy landscape." Proceedings of the National Academy of Sciences 116, no. 37 (2019): 18404–9. http://dx.doi.org/10.1073/pnas.1904707116.
Full textEriksson, Mikael, Guenther Leitz, Erik Fällman, et al. "Inhibitory Receptors Alter Natural Killer Cell Interactions with Target Cells Yet Allow Simultaneous Killing of Susceptible Targets." Journal of Experimental Medicine 190, no. 7 (1999): 1005–12. http://dx.doi.org/10.1084/jem.190.7.1005.
Full textSoller, Matthias, Min Li, and Irmgard U. Haussmann. "Determinants of ELAV gene-specific regulation." Biochemical Society Transactions 38, no. 4 (2010): 1122–24. http://dx.doi.org/10.1042/bst0381122.
Full textTalukder, Amlan, Xiaoman Li, and Haiyan Hu. "Position-wise binding preference is important for miRNA target site prediction." Bioinformatics 36, no. 12 (2020): 3680–86. http://dx.doi.org/10.1093/bioinformatics/btaa195.
Full textJhanwar-Uniyal, Meena, Sabrina L. Zeller, Eris Spirollari, Mohan Das, Simon J. Hanft, and Chirag D. Gandhi. "Discrete Mechanistic Target of Rapamycin Signaling Pathways, Stem Cells, and Therapeutic Targets." Cells 13, no. 5 (2024): 409. http://dx.doi.org/10.3390/cells13050409.
Full textZhou, Delong, Sonia Couture, Michelle S. Scott, and Sherif Abou Elela. "RBFOX2 alters splicing outcome in distinct binding modes with multiple protein partners." Nucleic Acids Research 49, no. 14 (2021): 8370–83. http://dx.doi.org/10.1093/nar/gkab595.
Full textTrezza, Alfonso, Anna Visibelli, Bianca Roncaglia, et al. "Unveiling Dynamic Hotspots in Protein–Ligand Binding: Accelerating Target and Drug Discovery Approaches." International Journal of Molecular Sciences 26, no. 9 (2025): 3971. https://doi.org/10.3390/ijms26093971.
Full textFaquetti, M. L., F. Grisoni, P. Schneider, G. Schneider, and A. M. Burden. "POS0091 OFF-TARGET PROFILING OF JANUS KINASE (JAK) INHIBITORS IN RHEUMATOID ARTHRITIS: A COMPUTER-BASED APPROACH FOR DRUG SAFETY STUDIES AND REPURPOSING." Annals of the Rheumatic Diseases 80, Suppl 1 (2021): 255.2–255. http://dx.doi.org/10.1136/annrheumdis-2021-eular.982.
Full textLi, Shiyuan, Duyu Chen, Qingtong Zhou, et al. "A General Chemiluminescence Strategy for Measuring Aptamer–Target Binding and Target Concentration." Analytical Chemistry 86, no. 11 (2014): 5559–66. http://dx.doi.org/10.1021/ac501061c.
Full textGijsen, Matthias, Erwin Dreesen, Ruth Van Daele, et al. "Pharmacokinetic/Pharmacodynamic Target Attainment Based on Measured versus Predicted Unbound Ceftriaxone Concentrations in Critically Ill Patients with Pneumonia: An Observational Cohort Study." Antibiotics 10, no. 5 (2021): 557. http://dx.doi.org/10.3390/antibiotics10050557.
Full textShlyakhtenko, Luda S., Alexander Y. Lushnikov, Atsushi Miyagi, and Yuri L. Lyubchenko. "Specificity of Binding of Single-Stranded DNA-Binding Protein to Its Target." Biochemistry 51, no. 7 (2012): 1500–1509. http://dx.doi.org/10.1021/bi201863z.
Full textBrokx, Richard D., Maria M. Lopez, Hans J. Vogel, and George I. Makhatadze. "Energetics of Target Peptide Binding by Calmodulin Reveals Different Modes of Binding." Journal of Biological Chemistry 276, no. 17 (2001): 14083–91. http://dx.doi.org/10.1074/jbc.m011026200.
Full text