Academic literature on the topic 'Targeting advertisement machine learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Targeting advertisement machine learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Targeting advertisement machine learning"
Ford, Elizabeth, Keegan Curlewis, Akkapon Wongkoblap, and Vasa Curcin. "Public Opinions on Using Social Media Content to Identify Users With Depression and Target Mental Health Care Advertising: Mixed Methods Survey." JMIR Mental Health 6, no. 11 (November 13, 2019): e12942. http://dx.doi.org/10.2196/12942.
Full textE, Prabhakar, Suresh Kumar V.S, Nandagopal S, and Dhivyaa C.R. "Mining Better Advertisement Tool for Government Schemes Using Machine Learning." International Journal of Psychosocial Rehabilitation 23, no. 4 (December 20, 2019): 1122–35. http://dx.doi.org/10.37200/ijpr/v23i4/pr190439.
Full textEt. al., D. Ramya ,. "Click Prediction for Advertisement in Websites using Linear Regression." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 4 (April 11, 2021): 271–76. http://dx.doi.org/10.17762/turcomat.v12i4.504.
Full textSun, Yan, Qian Wu, and Wendi Li. "A Push Model of Advertisement Classification Matching Based on Machine Learning." IOP Conference Series: Materials Science and Engineering 782 (April 15, 2020): 052050. http://dx.doi.org/10.1088/1757-899x/782/5/052050.
Full textWilkinson, Matthew C., and Andrew J. Meade. "Neural-Network-Inspired Machine Learning for Autonomous Lunar Targeting." Journal of Aerospace Information Systems 11, no. 7 (July 2014): 458–66. http://dx.doi.org/10.2514/1.i010166.
Full textFan, Shijie, Yu Chen, Cheng Luo, and Fanwang Meng. "Machine Learning Methods in Precision Medicine Targeting Epigenetic Diseases." Current Pharmaceutical Design 24, no. 34 (January 22, 2019): 3998–4006. http://dx.doi.org/10.2174/1381612824666181112114228.
Full textMiao, Yuantian, Chao Chen, Lei Pan, Qing-Long Han, Jun Zhang, and Yang Xiang. "Machine Learning–based Cyber Attacks Targeting on Controlled Information." ACM Computing Surveys 54, no. 7 (July 2021): 1–36. http://dx.doi.org/10.1145/3465171.
Full textZhang, Sen, Zheng Liu, and Wendong Xiao. "A Hierarchical Extreme Learning Machine Algorithm for Advertisement Click-Through Rate Prediction." IEEE Access 6 (2018): 50641–47. http://dx.doi.org/10.1109/access.2018.2868998.
Full textKonapure, R. C., and L. M. R. J. Lobo. "Video Content-Based Advertisement Recommendation System using Classification Technique of Machine Learning." Journal of Physics: Conference Series 1854, no. 1 (April 1, 2021): 012025. http://dx.doi.org/10.1088/1742-6596/1854/1/012025.
Full textLotfi, Sogol, Ziyan Zhang, Gayatri Viswanathan, Kaitlyn Fortenberry, Aria Mansouri Tehrani, and Jakoah Brgoch. "Targeting Productive Composition Space through Machine-Learning-Directed Inorganic Synthesis." Matter 3, no. 1 (July 2020): 261–72. http://dx.doi.org/10.1016/j.matt.2020.05.002.
Full textDissertations / Theses on the topic "Targeting advertisement machine learning"
Poletti, Matteo. "Learning to target advertisements at Spotify." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-170660.
Full textHedlund, Richard. "Predicting Visual Fixation on Digital Advertisement using Machine Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-272115.
Full textTrots att ad-tech industrin genererar intäkter motsvarande miljardbelopp så kan andelen digitala annonser som klickas på vara så låg som 0.1 % i många fall. Prestandan av klickbara annonser mäts ofta genom klickfrekvens (CTR) vilka är handlingsbaserade. Däremot, annonser vars annonsör har som mål att väcka medvetenhet för varumärket eller produkten, förlitar sig på andra typer av mätverktyg som intryck (eng: impressions) eller visningar på skärmen (eng: in-views). Målet med den här masteruppsatsen är att undersöka om visuell fixation av annonser kan agera som ett komplimenterande mätverktyg till CTR. Det här låg till grund för frågeställningarna som fokuserade på till vilken grad som maskininlärning kan förutspå fixation av annonser med hjälp av webbaserad data och observationer av ögonrörelser från en panel i Sverige, men också att ge insikt i vilka variabler som är mest framträdande till att förutspå fixation av annonser. Prestandan i att förutspå fixation av annonser från fyra populära maskininlärningsmodeller analyserades; logistisk regression, Random Forest, XGBoost och Field-Aware Factorization Machines, som tidigare har applicerats i att förutspå CTR. Logistisk regression och Random Forest användes med hjälp av k-faldig korsvalidering för att validera processen av att inkrementellt addera och transformera variabler. Resultatet visade att en kombination av tre av modellerna (eng: ensemble) kunde förutspå fixation av annonser med ett F1-värde av 0.5972 och ett AUC-ROC värde av 0.8005. Det senare värdet är jämförbart med tidigare prestanda i att förutspå CTR. Vidare var hemsida, varumärke, annonstyp, x-koordinat, samt bredd och höjd de mest framträdande variablerna för att förutspå fixation av annonser. Avslutningsvis visar det här att fixation av annonser kan förutspås baserat på webbaserad data från användare som surfar på internet. Framtida forskning får utvisa om fixation av annonser kommer att användas som ett komplimenterande mätverktyg till CTR, samt om det kommer att bli mottaget av ad-tech industrin.
Timoshenko, Artem. "Machine learning methods for targeting and new product development." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123572.
Full textCataloged from PDF version of thesis.
Includes bibliographical references.
Chapter 1: Market research traditionally relies on interviews and focus groups to identify customer needs. User-generated content (UGC), such as online reviews, social media, and call-center data, provides an opportunity to identify customer needs more efficiently. Established methods are not well-suited for large UGC datasets because much of the content is uninformative or repetitive. We propose a machine learning approach for identifying customer needs from UGC and evaluate the method using a new dataset. Once identified, the needs can be used to inform marketing strategy, brand positioning and new product development. Chapter 2: Targeting policies are used in marketing to match different firm actions to different customers. For example, retailers want to send different promotions to different customers, real estate agents want to show different homes, and car dealers want to propose different prices.
We conduct two large-scale field experiments to evaluate seven methods widely used to design targeting policies. The findings compare the performance of the targeting methods and demonstrate how well the methods address common data challenges. The challenges we study are covariate shift, concept shift, information loss through aggregation, and imbalanced data. We show that model-driven methods perform better than distance-driven methods and classification methods when the training data is ideal. However, the performance advantage vanishes in the presence of the challenges that affect the quality of the training data. Chapter 3: Firms typically compare the performance of different targeting policies by implementing the champion versus challenger experimental design. These experiments randomly assign customers to receive marketing actions recommended by either the existing (champion) policy or the new (challenger) policy, and then compare the aggregate outcomes.
We recommend an alternative experimental design and propose an estimation approach to improve the evaluation of targeting policies. The recommended experimental design randomly assigns customers to marketing actions. This allows evaluation of any targeting policy without requiring an additional experiment, including policies designed after the experiment is implemented. The proposed estimation approach identifies customers for whom different policies recommend the same action and recognizes that for these customers there is no difference in performance. This allows for a more precise comparison of the policies. We illustrate the advantages of the experimental design and the estimation approach using data from an actual field experiment. We also demonstrate that the grouping of customers, which is the foundation of our estimation approach, can help to improve the training of new targeting policies.
Chapter 4: Coupon personalization requires to predict how different combinations of coupons affect customer purchasing behavior. We develop a nonparametric model which predicts product choice for the entire assortment of a large retailer. Our model is nonparametric and is based on a deep neural network. The model inputs purchasing histories of individual customers and the coupon assignments to predict individual purchasing decisions. The model operates without ex-ante definitions of product categories. We evaluate the proposed product choice model in simulations. Our model significantly outperforms the baseline machine learning methods in terms of the prediction accuracy. Coupon personalization based on our model also achieves a substantially higher revenue compared to the baseline prediction methods.
by Artem Timoshenko.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Sloan School of Management
Haupt, Johannes Sebastian. "Machine Learning for Marketing Decision Support." Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21554.
Full textThe digitization of the economy has fundamentally changed the way in which companies interact with customers and made customer targeting a key intersection of marketing and information systems. Building models of customer behavior at scale requires development of tools at the intersection of data management and statistical knowledge discovery. This dissertation widens the scope of research on predictive modeling by focusing on the intersections of model building with data collection and decision support. Its goals are 1) to develop and validate new machine learning methods explicitly designed to optimize customer targeting decisions in direct marketing and customer retention management and 2) to study the implications of data collection for customer targeting from the perspective of the company and its customers. First, the thesis proposes methods that utilize the richness of e-commerce data, reduce the cost of data collection through efficient experiment design and address the targeting decision setting during model building. The underlying state-of-the-art machine learning models scale to high-dimensional customer data and can be conveniently applied by practitioners. These models further address the problem of causal inference that arises when the causal attribution of customer behavior to a marketing incentive is difficult. Marketers can directly apply the model estimates to identify profitable targeting policies under complex cost structures. Second, the thesis quantifies the savings potential of efficient experiment design and the monetary cost of an internal principle of data privacy. An analysis of data collection practices in direct marketing emails reveals the ubiquity of tracking mechanisms without user consent in e-commerce communication. These results form the basis for a machine-learning-based system for the detection and deletion of tracking elements from emails.
MELLO, SIMON. "VATS : Voice-Activated Targeting System." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279837.
Full textMaskininlärning är viktigt inom röstigenkänning och datorseende, för både små såväl som stora applikationer. Syftet med det här projektet är att titta på om enkla implementationer av maskininlärning duger för den verkligen världen. Ett enkelt artificiellt neuronnät kodat i Python, samt existerande programbibliotek för Python, används för att kontrollera en laserpekare via en servomotor och en Arduino, för att skapa ett röstaktiverat identifieringssystem. Neuronnätet tränat på MNIST data når en precision på 0.95 ± 0.01 när den försöker klassificera MNIST test data, men lyckas även klassificera inspelade bilder korrekt om störningen är låg. Detta gäller även för röstigenkänningen, då den sällan ger fel avläsningar. Den slutliga prototypen lyckas i alla domäner förutom att förvandla bilder som klassificerats korrekt till mål som Arduinon kan läsa av och sikta på, vilket betyder att prototypen inte lyckas sammanfoga röstigenkänningen och datorseendet.
Braman, Nathaniel. "Novel Radiomics and Deep Learning Approaches Targeting the Tumor Environment to Predict Response to Chemotherapy." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1586546527544791.
Full textCockroft, Nicholas T. "Applications of Cheminformatics for the Analysis of Proteolysis Targeting Chimeras and the Development of Natural Product Computational Target Fishing Models." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu156596730476322.
Full textChang, Jeremy, and 張書瑀. "Machine Learning Application: Correlation between Visual and Video Advertisement." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/bwfdpb.
Full text東海大學
資訊工程學系
107
Thanks to the popularity of modern networks, the number of Internet users has been growing high. More people watch videos on the Internet than that on televisions. Advertising industry on the Internet experience a vigorous growth in recent years. At the same time, people come to perceive different opinions and thoughts on the efficiency of video advertisements. Online advertising is usually based on “CTR”, an abbreviation of “Click through Rate”, to measure the efficiency of the advertisements or the total length of footage that advertisements showed to the viewers and the number of times each advertisement is actually clicked by the viewers. However, these evaluation methods are generally considered only reference-worthy. There is a more promising way to confirm the advertisements are actually watched by people. It is eye tracking technology. Our research discusses the application of eye tracking device, through the visual analysis system we developed, to collect the information from viewers’ sight line, which directly allows us to recognize in which objects or details that video viewers are interested and to further acknowledge the efficiency of video advertisements. Furthermore, we also employ the technology of Artificial Intelligence - Machine Learning in the system, so the machine can analyze the final result and to further predict more information from data we have collected in the advertisements.
Hu, Fei, and 胡斐. "Research on CTR Prediction for Advertisement based on Machine Learning of Distributed Platform." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/8eark8.
Full textBooks on the topic "Targeting advertisement machine learning"
McBride, Linden, and Austin Nichols. Retooling Poverty Targeting Using Out-of-Sample Validation and Machine Learning. World Bank, Washington, DC, 2016. http://dx.doi.org/10.1596/1813-9450-7849.
Full textBarker, Richard. Achieving future impact. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198737780.003.0007.
Full textBook chapters on the topic "Targeting advertisement machine learning"
Koutsopoulos, Iordanis, and Panagiotis Spentzouris. "Native Advertisement Selection and Allocation in Social Media Post Feeds." In Machine Learning and Knowledge Discovery in Databases, 588–603. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46128-1_37.
Full textXia, Yuan, Jingbo Zhou, Jingjia Cao, Yanyan Li, Fei Gao, Kun Liu, Haishan Wu, and Hui Xiong. "Intent-Aware Audience Targeting for Ride-Hailing Service." In Machine Learning and Knowledge Discovery in Databases, 136–51. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10997-4_9.
Full textRaj, Jaladi Guna Vardhan Amrutha, Jagannath Patro Allupati, and G. Kalaiarasi. "Identifying and Detection of Advertisement Click Fraud Based on Machine Learning." In Lecture Notes in Electrical Engineering, 525–34. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8752-8_53.
Full textChaudhuri, Sougata, Georgios Theocharous, and Mohammad Ghavamzadeh. "Importance of Recommendation Policy Space in Addressing Click Sparsity in Personalized Advertisement Display." In Machine Learning and Data Mining in Pattern Recognition, 32–46. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62416-7_3.
Full textRawat, Sumanu, Aman Chopra, Siddhartha Singh, and Shobhit Sinha. "Mid Roll Advertisement Placement Using Multi Modal Emotion Analysis." In Artificial Neural Networks and Machine Learning – ICANN 2019: Text and Time Series, 159–71. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30490-4_14.
Full textEl-Shal, Ibrahim H., Mustafa A. Elattar, and Wael Badawy. "On the Application of Real-Time Deep Neural Network for Automatic License Plate Reading from Sequence of Images Targeting Edge Artificial Intelligence Architectures." In Enabling Machine Learning Applications in Data Science, 299–311. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6129-4_21.
Full textMaffezzoli, A., and E. Wanke. "Explorative Data Analysis of In-Vitro Neuronal Network Behavior Based on an Unsupervised Learning Approach." In Machine Learning, 2068–80. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-60960-818-7.ch812.
Full text"1. Applying big data analytics to psychometric micro-targeting." In Machine Learning for Big Data Analysis, 1–30. De Gruyter, 2018. http://dx.doi.org/10.1515/9783110551433-001.
Full textEl Morr, Christo. "Virtual Communities, Machine Learning and IoT." In Research Anthology on Mental Health Stigma, Education, and Treatment, 381–89. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-8544-3.ch022.
Full textVora, Deepali R., and Kamatchi R. Iyer. "Deep Learning in Engineering Education." In Machine Learning and Deep Learning in Real-Time Applications, 187–218. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-3095-5.ch009.
Full textConference papers on the topic "Targeting advertisement machine learning"
Seker, Sadi Evren. "Real Life Machine Learning Case on Mobile Advertisement: A Set of Real-Life Machine Learning Problems and Solutions for Mobile Advertisement." In 2016 International Conference on Computational Science and Computational Intelligence (CSCI). IEEE, 2016. http://dx.doi.org/10.1109/csci.2016.0104.
Full textYang, Fan, Bin An, and Xizhao Wang. "Co-clustering for queries and corresponding advertisement." In 2009 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2009. http://dx.doi.org/10.1109/icmlc.2009.5212131.
Full textChakiat, Abhijith, Nishant Oli, and Varun Kumar Modi. "Deduplication of Advertisement Assets Using Deep Learning Ensembles." In 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2020. http://dx.doi.org/10.1109/icmla51294.2020.00145.
Full textLiu, Huxiao, Lianhai Wang, Weinan Zhang, and Wei Wang. "An Illegal Billboard Advertisement Detection Framework Based on Machine Learning." In the 2nd International Conference. New York, New York, USA: ACM Press, 2019. http://dx.doi.org/10.1145/3358528.3358549.
Full textSartor, Anderson Luiz, Pedro Henrique Exenberger Becker, Stephan Wong, Radu Marculescu, and Antonio Carlos Schneider Beck. "Machine Learning-Based Processor Adaptability Targeting Energy, Performance, and Reliability." In 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 2019. http://dx.doi.org/10.1109/isvlsi.2019.00037.
Full textZhou, Datong, Maximilian Balandat, and Claire Tomlin. "Residential demand response targeting using machine learning with observational data." In 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, 2016. http://dx.doi.org/10.1109/cdc.2016.7799295.
Full textLin, Tong, Laura Cervino, Xiaoli Tang, Nuno Vasconcelos, and Steve B. Jiang. "Tumor Targeting for Lung Cancer Radiotherapy Using Machine Learning Techniques." In 2008 Seventh International Conference on Machine Learning and Applications. IEEE, 2008. http://dx.doi.org/10.1109/icmla.2008.143.
Full textRathor, Abhinav, and Manasi Gyanchandani. "A review at Machine Learning algorithms targeting big data challenges." In 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT). IEEE, 2017. http://dx.doi.org/10.1109/iceeccot.2017.8284604.
Full textAiken, Emily L., Guadalupe Bedoya, Aidan Coville, and Joshua E. Blumenstock. "Targeting Development Aid with Machine Learning and Mobile Phone Data." In COMPASS '20: ACM SIGCAS Conference on Computing and Sustainable Societies. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3378393.3402274.
Full textWoo, Yeongju, Pizarroso Troncoso Carlos Andres, Hieyong Jeong, and Choonsung Shin. "Classification of diabetic walking through machine learning: Survey targeting senior citizens." In 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). IEEE, 2021. http://dx.doi.org/10.1109/icaiic51459.2021.9415250.
Full textReports on the topic "Targeting advertisement machine learning"
Aiken, Emily, Suzanne Bellue, Dean Karlan, Christopher Udry, and Joshua Blumenstock. Machine Learning and Mobile Phone Data Can Improve the Targeting of Humanitarian Assistance. Cambridge, MA: National Bureau of Economic Research, July 2021. http://dx.doi.org/10.3386/w29070.
Full text