Journal articles on the topic 'Targeting signal'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Targeting signal.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Weber, George, Fei Shen, Tamás I. Orbán, Szabolcs Kökeny, and Edith Olah. "Targeting signal transduction." Advances in Enzyme Regulation 43, no. 1 (2003): 47–56. http://dx.doi.org/10.1016/s0065-2571(03)00021-9.
Full textBertino, Joseph R. "Targeting signal transduction." Current Oncology Reports 3, no. 6 (2001): 453–54. http://dx.doi.org/10.1007/s11912-001-0063-y.
Full textBeeram, Muralidhar, and Amita Patnaik. "Targeting intracellular signal transduction." Hematology/Oncology Clinics of North America 16, no. 5 (2002): 1089–100. http://dx.doi.org/10.1016/s0889-8588(02)00054-0.
Full textVarshavsky, Alexander. "Naming a targeting signal." Cell 64, no. 1 (1991): 13–15. http://dx.doi.org/10.1016/0092-8674(91)90202-a.
Full textGould, S. J., G. A. Keller, and S. Subramani. "Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins." Journal of Cell Biology 107, no. 3 (1988): 897–905. http://dx.doi.org/10.1083/jcb.107.3.897.
Full textChatzi, Katerina E., Marios Frantzeskos Sardis, Alexandra Tsirigotaki, et al. "Preprotein mature domains contain translocase targeting signals that are essential for secretion." Journal of Cell Biology 216, no. 5 (2017): 1357–69. http://dx.doi.org/10.1083/jcb.201609022.
Full textGould, S. G., G. A. Keller, and S. Subramani. "Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase." Journal of Cell Biology 105, no. 6 (1987): 2923–31. http://dx.doi.org/10.1083/jcb.105.6.2923.
Full textEllis, S. R., A. K. Hopper, and N. C. Martin. "Amino-terminal extension generated from an upstream AUG codon increases the efficiency of mitochondrial import of yeast N2,N2-dimethylguanosine-specific tRNA methyltransferases." Molecular and Cellular Biology 9, no. 4 (1989): 1611–20. http://dx.doi.org/10.1128/mcb.9.4.1611-1620.1989.
Full textEllis, S. R., A. K. Hopper, and N. C. Martin. "Amino-terminal extension generated from an upstream AUG codon increases the efficiency of mitochondrial import of yeast N2,N2-dimethylguanosine-specific tRNA methyltransferases." Molecular and Cellular Biology 9, no. 4 (1989): 1611–20. http://dx.doi.org/10.1128/mcb.9.4.1611.
Full textLiu, Xingyi. "De-targeting to signal quality." International Journal of Research in Marketing 37, no. 2 (2020): 386–404. http://dx.doi.org/10.1016/j.ijresmar.2019.10.003.
Full textKragler, F., A. Langeder, J. Raupachova, M. Binder, and A. Hartig. "Two independent peroxisomal targeting signals in catalase A of Saccharomyces cerevisiae." Journal of Cell Biology 120, no. 3 (1993): 665–73. http://dx.doi.org/10.1083/jcb.120.3.665.
Full textGoder, Veit, Christoph Bieri, and Martin Spiess. "Glycosylation Can Influence Topogenesis of Membrane Proteins and Reveals Dynamic Reorientation of Nascent Polypeptides within the Translocon." Journal of Cell Biology 147, no. 2 (1999): 257–66. http://dx.doi.org/10.1083/jcb.147.2.257.
Full textChew, Orinda, and James Whelan. "Dual targeting ability of targeting signals is dependent on the nature of the mature protein." Functional Plant Biology 30, no. 7 (2003): 805. http://dx.doi.org/10.1071/fp03077.
Full textKitoh, Yoshihiro, Hitoshi Ueda, Takashi Andoh, Noriaki Yokoi, and Katuto Takemura. "426 MR Angiography using Signal Targeting with Alternating Radiofrequency(STAR)." Japanese Journal of Radiological Technology 53, no. 8 (1997): 1296. http://dx.doi.org/10.6009/jjrt.kj00001356267.
Full textMcCubrey, James A., Linda S. Steelman, William H. Chappell, et al. "Advances in Targeting Signal Transduction Pathways." Oncotarget 3, no. 12 (2012): 1505–21. http://dx.doi.org/10.18632/oncotarget.802.
Full textStroud, Robert M., and Peter Walter. "Signal sequence recognition and protein targeting." Current Opinion in Structural Biology 9, no. 6 (1999): 754–59. http://dx.doi.org/10.1016/s0959-440x(99)00040-8.
Full textLevitzki, Alexander. "Targeting signal transduction for disease therapy." Current Opinion in Cell Biology 8, no. 2 (1996): 239–44. http://dx.doi.org/10.1016/s0955-0674(96)80071-8.
Full textLevitzki, Alexander. "Targeting signal transduction for disease therapy." Medical Oncology 14, no. 2 (1997): 83–89. http://dx.doi.org/10.1007/bf02990952.
Full textKunze, Markus. "The type-2 peroxisomal targeting signal." Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1867, no. 2 (2020): 118609. http://dx.doi.org/10.1016/j.bbamcr.2019.118609.
Full textFlaherty, K. T. "Targeting signal transduction pathways in melanoma." Melanoma Research 20 (June 2010): e20. http://dx.doi.org/10.1097/01.cmr.0000382784.44182.71.
Full textDillon, Christian, Anna Creer, Karen Kerr, Angelika Kümin, and Clive Dickson. "Basolateral Targeting of ERBB2 Is Dependent on a Novel Bipartite Juxtamembrane Sorting Signal but Independent of the C-Terminal ERBIN-Binding Domain." Molecular and Cellular Biology 22, no. 18 (2002): 6553–63. http://dx.doi.org/10.1128/mcb.22.18.6553-6563.2002.
Full textDworetzky, S. I., R. E. Lanford, and C. M. Feldherr. "The effects of variations in the number and sequence of targeting signals on nuclear uptake." Journal of Cell Biology 107, no. 4 (1988): 1279–87. http://dx.doi.org/10.1083/jcb.107.4.1279.
Full textChen, Hua, and Xue Ting Zhang. "The Comparison Study of Targeting Observation for Extratropical Transition of Hurricane Fabian." Advanced Materials Research 518-523 (May 2012): 5840–45. http://dx.doi.org/10.4028/www.scientific.net/amr.518-523.5840.
Full textMatter, K., E. M. Yamamoto, and I. Mellman. "Structural requirements and sequence motifs for polarized sorting and endocytosis of LDL and Fc receptors in MDCK cells." Journal of Cell Biology 126, no. 4 (1994): 991–1004. http://dx.doi.org/10.1083/jcb.126.4.991.
Full textKanaani, Jamil, Alaa El-Din El-Husseini, Andrea Aguilera-Moreno, Julia M. Diacovo, David S. Bredt, and Steinunn Baekkeskov. "A combination of three distinct trafficking signals mediates axonal targeting and presynaptic clustering of GAD65." Journal of Cell Biology 158, no. 7 (2002): 1229–38. http://dx.doi.org/10.1083/jcb.200205053.
Full textMichaelson, David, Ian Ahearn, Martin Bergo, Stephen Young, and Mark Philips. "Membrane Trafficking of Heterotrimeric G Proteins via the Endoplasmic Reticulum and Golgi." Molecular Biology of the Cell 13, no. 9 (2002): 3294–302. http://dx.doi.org/10.1091/mbc.e02-02-0095.
Full textJomaa, Ahmad, Martin Gamerdinger, Hao-Hsuan Hsieh, et al. "Mechanism of signal sequence handover from NAC to SRP on ribosomes during ER-protein targeting." Science 375, no. 6583 (2022): 839–44. http://dx.doi.org/10.1126/science.abl6459.
Full textZhuang, Zhan, Jinglin Zhou, Minglian Qiu, et al. "The Combination of Anti-CD47 Antibody with CTLA4 Blockade Enhances Anti-Tumor Immunity in Non-Small Cell Lung Cancer via Normalization of Tumor Vasculature and Reprogramming of the Immune Microenvironment." Cancers 16, no. 4 (2024): 832. http://dx.doi.org/10.3390/cancers16040832.
Full textHoward, James P., Jenna L. Hutton, John M. Olson, and Gregory S. Payne. "Sla1p serves as the targeting signal recognition factor for NPFX(1,2)D-mediated endocytosis." Journal of Cell Biology 157, no. 2 (2002): 315–26. http://dx.doi.org/10.1083/jcb.200110027.
Full textJones, Jacob M., James C. Morrell, and Stephen J. Gould. "Multiple Distinct Targeting Signals in Integral Peroxisomal Membrane Proteins." Journal of Cell Biology 153, no. 6 (2001): 1141–50. http://dx.doi.org/10.1083/jcb.153.6.1141.
Full textBode, A. M., and Z. Dong. "Targeting signal transduction pathways by chemopreventive agents." Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 555, no. 1-2 (2004): 33–51. http://dx.doi.org/10.1016/j.mrfmmm.2004.05.018.
Full textSoendergaard, Christoffer, Fredrik Holmberg Bergenheim, Jakob Tveiten Bjerrum, and Ole Haagen Nielsen. "Targeting JAK-STAT signal transduction in IBD." Pharmacology & Therapeutics 192 (December 2018): 100–111. http://dx.doi.org/10.1016/j.pharmthera.2018.07.003.
Full textAuld, Douglas S., David Diller, and Koc-Kan Ho. "Targeting signal transduction with large combinatorial collections." Drug Discovery Today 7, no. 24 (2002): 1206–13. http://dx.doi.org/10.1016/s1359-6446(02)02530-8.
Full textYeh, Jen Jen, and Channing J. Der. "Targeting signal transduction in pancreatic cancer treatment." Expert Opinion on Therapeutic Targets 11, no. 5 (2007): 673–94. http://dx.doi.org/10.1517/14728222.11.5.673.
Full textOhnishi, Ken, and Takeo Ohnishi. "Hyperthermic sensitizers targeting heat-induced signal transductions." Annals of Cancer Research and Therapy 15, no. 2 (2007): 35–40. http://dx.doi.org/10.4993/acrt.15.35.
Full textSchliebs, Wolfgang, Jürgen Saidowsky, Bogos Agianian, Gabriele Dodt, Friedrich W. Herberg, and Wolf-H. Kunau. "Recombinant Human Peroxisomal Targeting Signal Receptor PEX5." Journal of Biological Chemistry 274, no. 9 (1999): 5666–73. http://dx.doi.org/10.1074/jbc.274.9.5666.
Full textHalleck, M. S., and M. Rechsteiner. "Antibody caging of a nuclear-targeting signal." Proceedings of the National Academy of Sciences 87, no. 19 (1990): 7551–54. http://dx.doi.org/10.1073/pnas.87.19.7551.
Full textSchleiff, E., and H. McBride. "The central matrix loop drives import of uncoupling protein 1 into mitochondria." Journal of Cell Science 113, no. 12 (2000): 2267–72. http://dx.doi.org/10.1242/jcs.113.12.2267.
Full textZhang, Yangyang, Minghua Liu, Jun Wang, et al. "Targeting Protein Kinase Inhibitors with Traditional Chinese Medicine." Current Drug Targets 20, no. 15 (2019): 1505–16. http://dx.doi.org/10.2174/1389450120666190802125959.
Full textDuBose, D. Ross, Samuel C. Wolff, Ai-Dong Qi, Izabela Naruszewicz, and Robert A. Nicholas. "Apical targeting of the P2Y4 receptor is directed by hydrophobic and basic residues in the cytoplasmic tail." American Journal of Physiology-Cell Physiology 304, no. 3 (2013): C228—C239. http://dx.doi.org/10.1152/ajpcell.00251.2012.
Full textHájek, P., J. Y. Koh, L. Jones, and D. M. Bedwell. "The amino terminus of the F1-ATPase beta-subunit precursor functions as an intramolecular chaperone to facilitate mitochondrial protein import." Molecular and Cellular Biology 17, no. 12 (1997): 7169–77. http://dx.doi.org/10.1128/mcb.17.12.7169.
Full textBlattner, J., B. Swinkels, H. Dörsam, T. Prospero, S. Subramani, and C. Clayton. "Glycosome assembly in trypanosomes: variations in the acceptable degeneracy of a COOH-terminal microbody targeting signal." Journal of Cell Biology 119, no. 5 (1992): 1129–36. http://dx.doi.org/10.1083/jcb.119.5.1129.
Full textMartoglio, B. "Intramembrane proteolysis and post-targeting functions of signal peptides." Biochemical Society Transactions 31, no. 6 (2003): 1243–47. http://dx.doi.org/10.1042/bst0311243.
Full textGrueneberg, D. A., K. J. Simon, K. Brennan, and M. Gilman. "Sequence-specific targeting of nuclear signal transduction pathways by homeodomain proteins." Molecular and Cellular Biology 15, no. 6 (1995): 3318–26. http://dx.doi.org/10.1128/mcb.15.6.3318.
Full textWulfkuhle, J. D., I. E. Donina, N. H. Stark, et al. "Domain analysis of supervillin, an F-actin bundling plasma membrane protein with functional nuclear localization signals." Journal of Cell Science 112, no. 13 (1999): 2125–36. http://dx.doi.org/10.1242/jcs.112.13.2125.
Full textSpatola Rossi, Tatiana, and Verena Kriechbaumer. "An Interplay between Mitochondrial and ER Targeting of a Bacterial Signal Peptide in Plants." Plants 12, no. 3 (2023): 617. http://dx.doi.org/10.3390/plants12030617.
Full textAddya, Sankar, Hindupur K. Anandatheerthavarada, Gopa Biswas, Shripad V. Bhagwat, Jayati Mullick, and Narayan G. Avadhani. "Targeting of NH2-terminal–processed Microsomal Protein to Mitochondria: A Novel Pathway for the Biogenesis of Hepatic Mitochondrial P450MT2." Journal of Cell Biology 139, no. 3 (1997): 589–99. http://dx.doi.org/10.1083/jcb.139.3.589.
Full textGoping, Ing Swie, Atan Gross, Josée N. Lavoie, et al. "Regulated Targeting of BAX to Mitochondria." Journal of Cell Biology 143, no. 1 (1998): 207–15. http://dx.doi.org/10.1083/jcb.143.1.207.
Full textHamilton, VaNae, Ujjal K. Singha, Joseph T. Smith, Ebony Weems, and Minu Chaudhuri. "Trypanosome Alternative Oxidase Possesses both an N-Terminal and Internal Mitochondrial Targeting Signal." Eukaryotic Cell 13, no. 4 (2014): 539–47. http://dx.doi.org/10.1128/ec.00312-13.
Full textWild, Klemens, Matthias M. M. Becker, Georg Kempf, and Irmgard Sinning. "Structure, dynamics and interactions of large SRP variants." Biological Chemistry 401, no. 1 (2019): 63–80. http://dx.doi.org/10.1515/hsz-2019-0282.
Full text