Academic literature on the topic 'Taut foliations'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Taut foliations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Taut foliations"

1

Colin, Vincent, William H. Kazez, and Rachel Roberts. "Taut foliations." Communications in Analysis and Geometry 27, no. 2 (2019): 357–75. http://dx.doi.org/10.4310/cag.2019.v27.n2.a4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shanti Caillat-Gibert and Daniel Matignon. "Existence of Taut Foliations on Seifert Fibered Homology 3-spheres." Canadian Journal of Mathematics 66, no. 1 (2014): 141–69. http://dx.doi.org/10.4153/cjm-2013-011-4.

Full text
Abstract:
AbstractThis paper concerns the problem of existence of taut foliations among 3-manifolds. From the work of David Gabai we know that a closed 3-manifold with non-trivial second homology group admits a taut foliation. The essential part of this paper focuses on Seifert fibered homology 3-spheres. The result is quite different if they are integral or rational but non-integral homology 3-spheres. Concerning integral homology 3-spheres, we can see that all but the 3-sphere and the Poincaré 3-sphere admit a taut foliation. Concerning non-integral homology 3-spheres, we prove there are infinitely ma
APA, Harvard, Vancouver, ISO, and other styles
3

Roberts, Rachel. "Constructing taut foliations." Commentarii Mathematici Helvetici 70, no. 1 (1995): 516–45. http://dx.doi.org/10.1007/bf02566022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wiesendorf, Stephan. "Taut submanifolds and foliations." Journal of Differential Geometry 96, no. 3 (2014): 457–505. http://dx.doi.org/10.4310/jdg/1395321847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brittenham, Mark, Ramin Naimi, and Rachel Roberts. "Graph manifolds and taut foliations." Journal of Differential Geometry 45, no. 3 (1997): 446–70. http://dx.doi.org/10.4310/jdg/1214459838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Tao, and Rachel Roberts. "Taut foliations in knot complements." Pacific Journal of Mathematics 269, no. 1 (2014): 149–68. http://dx.doi.org/10.2140/pjm.2014.269.149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Honda, Ko, William H. Kazez, and Gordana Matić. "Tight contact structures and taut foliations." Geometry & Topology 4, no. 1 (2000): 219–42. http://dx.doi.org/10.2140/gt.2000.4.219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Calegari, Danny. "Almost continuous extension for taut foliations." Mathematical Research Letters 8, no. 5 (2001): 637–40. http://dx.doi.org/10.4310/mrl.2001.v8.n5.a5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bowden, Jonathan. "Contact structures, deformations and taut foliations." Geometry & Topology 20, no. 2 (2016): 697–746. http://dx.doi.org/10.2140/gt.2016.20.697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Slesar, Vladimir. "Spectral sequences and taut Riemannian foliations." Annals of Global Analysis and Geometry 32, no. 1 (2007): 87–101. http://dx.doi.org/10.1007/s10455-006-9054-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Taut foliations"

1

Krishna, Siddhi. "Taut foliations, positive braids, and the L-space conjecture:." Thesis, Boston College, 2020. http://hdl.handle.net/2345/bc-ir:108731.

Full text
Abstract:
Thesis advisor: Joshua E. Greene<br>We construct taut foliations in every closed 3-manifold obtained by r-framed Dehn surgery along a positive 3-braid knot K in S^3, where r &lt; 2g(K)-1 and g(K) denotes the Seifert genus of K. This confirms a prediction of the L--space conjecture. For instance, we produce taut foliations in every non-L-space obtained by surgery along the pretzel knot P(-2,3,7), and indeed along every pretzel knot P(-2,3,q), for q a positive odd integer. This is the first construction of taut foliations for every non-L-space obtained by surgery along an infinite family of hype
APA, Harvard, Vancouver, ISO, and other styles
2

Wiesendorf, Stephan [Verfasser], Gudlaugur [Akademischer Betreuer] Thorbergsson, and Hansjörg [Akademischer Betreuer] Geiges. "Taut Submanifolds and Foliations / Stephan Wiesendorf. Gutachter: Gudlaugur Thorbergsson ; Hansjörg Geiges." Köln : Universitäts- und Stadtbibliothek Köln, 2011. http://d-nb.info/1038111668/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wiesendorf, Stephan [Verfasser], Gudlaugur Akademischer Betreuer] Thorbergsson, and Hansjörg [Akademischer Betreuer] [Geiges. "Taut Submanifolds and Foliations / Stephan Wiesendorf. Gutachter: Gudlaugur Thorbergsson ; Hansjörg Geiges." Köln : Universitäts- und Stadtbibliothek Köln, 2011. http://nbn-resolving.de/urn:nbn:de:hbz:38-44381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Caillat-Gibert, Shanti. "Problème d'existence de feuilletage tendu dans les 3- variétés." Thesis, Aix-Marseille 1, 2011. http://www.theses.fr/2011AIX10083/document.

Full text
Abstract:
Dans cette thèse, on étudie les C2-feuilletages de codimension 1, dans les 3-variétés compactes connexes et orientables. Il est bien connu que l’on peut construire explicitement sur de telles variétés un feuilletage qui possède des composantes de Reeb. Vient alors le problème crucial d’existence des feuilletages tendus (toujours ouvert).Rappelons qu’un feuilletage tendu n’admet pas de composante de Reeb, mais que la réciproque est fausse.La première partie de ce travail, consiste à comprendre la différence entre un feuilletage non-tendu sans composante de Reeb et un feuilletage tendu. On verra
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!