Academic literature on the topic 'Taxicab geometry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Taxicab geometry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Taxicab geometry"
Ho, Y. Phoebe, and Yan Liu. "Parabolas in Taxicab Geometry." Missouri Journal of Mathematical Sciences 8, no. 2 (May 1996): 63–72. http://dx.doi.org/10.35834/1996/0802063.
Full textBerger, Ruth I. "From Circle to Hyperbola in Taxicab Geometry." Mathematics Teacher 109, no. 3 (October 2015): 214–19. http://dx.doi.org/10.5951/mathteacher.109.3.0214.
Full textKocayusufoğlu, İsmail. "Trigonometry on Iso-Taxicab Geometry." Mathematical and Computational Applications 5, no. 3 (December 1, 2000): 201–12. http://dx.doi.org/10.3390/mca5020201.
Full textSowell, Katye O. "Taxicab Geometry-A New Slant." Mathematics Magazine 62, no. 4 (October 1, 1989): 238. http://dx.doi.org/10.2307/2689762.
Full textGolland, Louise. "Karl Menger and Taxicab Geometry." Mathematics Magazine 63, no. 5 (December 1, 1990): 326. http://dx.doi.org/10.2307/2690903.
Full textTian, Songlin, Shing‐Seung So, and Guanghui Chen. "Concerning circles in taxicab geometry." International Journal of Mathematical Education in Science and Technology 28, no. 5 (September 1997): 727–33. http://dx.doi.org/10.1080/0020739970280509.
Full textHanson, J. R. "A visit to taxicab geometry." International Journal of Mathematical Education in Science and Technology 43, no. 8 (December 15, 2012): 1109–23. http://dx.doi.org/10.1080/0020739x.2012.662291.
Full textHanson, J. R. "Regular polygons in taxicab geometry." International Journal of Mathematical Education in Science and Technology 45, no. 7 (April 2, 2014): 1084–95. http://dx.doi.org/10.1080/0020739x.2014.902130.
Full textBahuaud, Eric, Shana Crawford, Aaron Fish, Dylan Helliwell, Anna Miller, Freddy Nungaray, Suki Shergill, Julian Tiffay, and Nico Velez. "Apollonian sets in taxicab geometry." Rocky Mountain Journal of Mathematics 50, no. 1 (February 2020): 25–39. http://dx.doi.org/10.1216/rmj.2020.50.25.
Full textSowell, Katye O. "Taxicab Geometry—A New Slant." Mathematics Magazine 62, no. 4 (October 1989): 238–48. http://dx.doi.org/10.1080/0025570x.1989.11977445.
Full textDissertations / Theses on the topic "Taxicab geometry"
Ada, Tuba, and Aytaç Kurtulus. "A Study On Problem Posing-Solving in the Taxicab Geometry and Applying Simcity Computer Game." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-79299.
Full textLOIOLA, CARLOS AUGUSTO GOMES. "A TAXICAB FOR EUCLID: A NON EUCLIDEAN GEOMETRY IN BASIC EDUCATION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2014. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=25026@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
A dissertação em tela foi desenvolvida com o intuito de proporcionar ao professor de matemática uma introdução ao estudo das Geometrias Não Euclidianas, um assunto carente em nossas salas de aulas tanto do Ensino Básico como das Licenciaturas em Matemática. Em consonância com os Parâmetros Curriculares Nacionais, são historicamente construídos os conhecimentos matemáticos apresentados para discutir o Quinto Postulado dos Elementos de Euclides e para apresentar a descoberta de novas geometrias. Para ser apresentada de forma mais detalhada, foi escolhida uma Geometria Não Euclidiana que pode ser facilmente entendida e contextualizada por alunos do Ensino Médio: a Geometria do Táxi. Tal geometria, além de possibilitar ligações com outros conteúdos do Ensino Básico também é um modelo para a geografia urbana, oferecendo ao alunado a possibilidade de interação com questões motivadoras, interdisciplinares e próximas do seu cotidiano. É apresentada uma sugestão de dinâmica que compara os conceitos das distâncias euclidiana e do táxi além de discutir a definição de circunferência e sua representação tanto na Geometria Euclidiana como na Geometria do Táxi. Além disso, alguns resultados da aplicação da referida dinâmica em turmas do 3o. ano do Ensino Médio do C.E. Professor Ney Cidade Palmeiro, localizado na cidade de Itaguaí no Rio de Janeiro, também são relatados. Pretende-se que este trabalho seja mais uma contribuição para o aprimoramento da formação continuada dos professores das escolas de ensino básico no país.
The present dissertation was developed with the intention of providing the mathematics teacher an introduction to the study of Non Euclidean Geometry, one lacking subject in our classrooms as much as the basic education and undergraduate mathematics. In line with the National Curriculum Parameters, mathematical knowledge presented to discuss the Fifth Postulate of Euclid s Elements, and to present the discovery of new geometries are historically constructed. To be presented in more details, we choose a non Euclidean Geometry that can be easily understood and contextualized by high school students: the Taxicab Geometry. This geometry, in addition to allowing connections with other content of basic education, such geometry is a model for urban geography, offering the pupils the opportunity to their everyday issues. A suggested activity to be developed in the classroom by students who compares the concepts of taxi distance and euclidean distance and besides discussing the definition of a circle and its representation in both Euclidean Geometry as in the Taxi appears. Futhermore, some results of implementing this activity in class 3rd. year of high school the Colégio Estadual Professor Ney Cidade Palmeiro, located in Itaguaí in Rio de Janeiro, are also reported. It is intended that this work is a futher contribuition to the improvement of continuing education of teachers of primary schools in the country.
Pavani, Victor Vaz. "A Geometria do Taxista como ferramenta de consolidação de conteúdos." reponame:Repositório Institucional da UFABC, 2017.
Find full textDissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Mestrado Profissional em Matemática em Rede Nacional, 2017.
É comum realizarmos revisões de conteúdos com os alunos com o objetivo de sanar dúvidas e consolidar conceitos. Neste trabalho, apresentamos a Geometria do Taxista, uma geometria que difere da Geometria Euclidiana na maneira de medir as distâncias. Pela proximidade com a Geometria Euclidiana, propusemos cinco atividades que possibilitarão a apresentação desse conteúdo, a revisão e a consolidação de muitos temas abordados nos diversos anos que antecedem o ensino superior. Esperamos que este trabalho contribua para o aprendizado de alunos e professores.
It¿s a quite usual practice to review some mathematics topics on the middle and, mainly, high school, several times in order to consolidate math¿s fundamental concepts among the students. In the present work, we present the Taxicab Geometry, a geometry which differs from the usual Euclidean Geometry on the way one can measure distances. Due to the close relationship with the Euclidean Geometry, we propose some activities that provide us a nice revision and consolidation exercise on several geometric and algebraic topics relevant to undergraduate students aspirants. We deeply hope that this work can contribute someway to the teachers¿ and students¿ learning process.
Johnson, William Isaac. "Conics and geometry." Thesis, 2010. http://hdl.handle.net/2152/ETD-UT-2010-08-1565.
Full texttext
Books on the topic "Taxicab geometry"
Taxicab Geometry: An adventure in non-Euclidean geometry. New York: Dover Publications, 1987.
Find full textKrause, Eugene F. Taxicab geometry: An adventure in non-Euclidean geometry. New York: Dover Publications, 1986.
Find full textBook chapters on the topic "Taxicab geometry"
Gardner, Martin. "Taxicab Geometry." In The Last Recreations, 159–75. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-0-387-30389-5_10.
Full text"Taxicab geometry." In Geometry: The Line and the Circle, 93–104. Providence, Rhode Island: American Mathematical Society, 2018. http://dx.doi.org/10.1090/text/044/05.
Full text"Appendix 3. Taxicab geometry." In X and the City, 269–72. Princeton: Princeton University Press, 2012. http://dx.doi.org/10.1515/9781400841691.269.
Full textYanik, H. Bahadir, Terri L. Kurz, and Yasin Memis. "Learning from Programming Robots." In Advances in Early Childhood and K-12 Education, 230–55. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-3200-2.ch012.
Full textYanik, H. Bahadir, Terri L. Kurz, and Yasin Memis. "Learning from Programming Robots." In Research Anthology on Computational Thinking, Programming, and Robotics in the Classroom, 900–925. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-2411-7.ch039.
Full textConference papers on the topic "Taxicab geometry"
Ghosh, Partha, Takaaki Goto, and Soumya Sen. "Computing Skyline Using Taxicab Geometry." In 2017 5th Intl Conf on Applied Computing and Information Technology/4th Intl Conf on Computational Science/Intelligence and Applied Informatics/2nd Intl Conf on Big Data, Cloud Computing, Data Science (ACIT-CSII-BCD). IEEE, 2017. http://dx.doi.org/10.1109/acit-csii-bcd.2017.35.
Full textSamson, Aran V., and Andrei D. Coronel. "Estimating note phrase aesthetic similarity using feature-based taxicab geometry." In 2018 International Conference on Digital Arts, Media and Technology (ICDAMT). IEEE, 2018. http://dx.doi.org/10.1109/icdamt.2018.8376506.
Full textSharifi, Neda, Muhammad Ali, Geoffrey Holmes, and Yifan Chen. "Blind Obstacle Avoidance Using Taxicab Geometry for NanorobotAssisted Direct Drug Targeting." In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) in conjunction with the 43rd Annual Conference of the Canadian Medical and Biological Engineering Society. IEEE, 2020. http://dx.doi.org/10.1109/embc44109.2020.9175165.
Full textSharifi, Neda, Yifan Chen, Geoffrey Holmes, U. Kei Cheang, and Zheng Gong. "Model Predictive Control Strategy for Navigating Nanoswimmers in Blood Vessels Using Taxicab Geometry." In 2019 IEEE 13th International Conference on Nano/Molecular Medicine & Engineering (NANOMED). IEEE, 2019. http://dx.doi.org/10.1109/nanomed49242.2019.9130625.
Full textFord, Andrew T., and Timothy P. Waldron. "Relating Airport Surface Collision Potential to Taxiway Geometry and Traffic Flow." In 14th AIAA Aviation Technology, Integration, and Operations Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-2156.
Full text