Academic literature on the topic 'Techniques of fabrication'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Techniques of fabrication.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Techniques of fabrication"
Deisinger, Ulrike, Sabine Hamisch, Matthias Schumacher, Franzika Uhl, Rainer Detsch, and Günter Ziegler. "Fabrication of Tailored Hydroxyapatite Scaffolds: Comparison between a Direct and an Indirect Rapid Prototyping Technique." Key Engineering Materials 361-363 (November 2007): 915–18. http://dx.doi.org/10.4028/www.scientific.net/kem.361-363.915.
Full textWahyuni, Wulan Tri, Budi Riza Putra, Achmad Fauzi, Desi Ramadhanti, Eti Rohaeti, and Rudi Heryanto. "A Brief Review on Fabrication of Screen-Printed Carbon Electrode: Materials and Techniques." Indo. J Chem. Res. 8, no. 3 (January 31, 2021): 210–18. http://dx.doi.org/10.30598//ijcr.2021.7-wul.
Full textWhite, D. R., J. C. Buckland-Wright, R. V. Griffith, L. N. Rothenberg, C. K. Showwalter, G. Williams, I. J. Wilson, and M. Zankl. "Appendix D: Fabrication Techniques." Journal of the International Commission on Radiation Units and Measurements os25, no. 1 (June 15, 1992): 162–64. http://dx.doi.org/10.1093/jicru/os25.1.162.
Full textWhite, D. R., J. C. Buckland-Wright, R. V. Griffith, L. N. Rothenberg, C. K. Showwalter, G. Williams, I. J. Wilson, and M. Zankl. "Appendix D: Fabrication Techniques." Reports of the International Commission on Radiation Units and Measurements os-25, no. 1 (June 1992): 162–64. http://dx.doi.org/10.1093/jicru_os25.1.162.
Full textEmhemmed, Adel, Abdulbast Kriama, Osama Terfaas, and Graham Green. "New Method to Fabrication 3D Micro-Device Structures." Applied Mechanics and Materials 492 (January 2014): 286–90. http://dx.doi.org/10.4028/www.scientific.net/amm.492.286.
Full textKotlicki, A., B. G. Turrell, D. DiSanto, and A. K. Drukier. "New fabrication techniques for PASS." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 520, no. 1-3 (March 2004): 175–77. http://dx.doi.org/10.1016/j.nima.2003.11.286.
Full textWeiss, R. "Fabrication techniques for thermoplastic composites." Cryogenics 31, no. 4 (April 1991): 319–22. http://dx.doi.org/10.1016/0011-2275(91)90100-b.
Full textMcCord, J. Fraser. "Contemporary Techniques for Denture Fabrication." Journal of Prosthodontics 18, no. 2 (February 2009): 106–11. http://dx.doi.org/10.1111/j.1532-849x.2009.00439.x.
Full textBrown, R. L. "STRIP FABRICATION USING PEELING TECHNIQUES." Materials and Manufacturing Processes 4, no. 4 (January 1989): 467–81. http://dx.doi.org/10.1080/10426918908956310.
Full textBi, Ke, Qingmin Wang, Jianchun Xu, Lihao Chen, Chuwen Lan, and Ming Lei. "All‐Dielectric Metamaterial Fabrication Techniques." Advanced Optical Materials 9, no. 1 (November 20, 2020): 2001474. http://dx.doi.org/10.1002/adom.202001474.
Full textDissertations / Theses on the topic "Techniques of fabrication"
Ryken, Marv. "Trade-offs of Antenna Fabrication Techniques." International Foundation for Telemetering, 2014. http://hdl.handle.net/10150/578365.
Full textThis paper addresses the future military munitions' system requirements for antennas in terms of the existing versus new fabrication technology. The antenna requirements of the future smart munitions will be GPS for precision guidance and TM for system performance testing. The environmental requirements remain the same; large temperature operating range with operation at high temperatures and high shock capable. As usual, the munitions are getting smaller, frequency bandwidth is getting larger, and the cost of the antennas must be minimized in production quantities. In particular this paper compares the existing antenna fabrication technology of Teflon based dielectric printed circuits versus multilayer alumina in the green state, a technology that has been perfected for fabricating microwave integrated circuits (MIC's). The trade-offs that will be addressed are temperature, shock, cost, tunability, loss, size, dielectric constant, and frequency bandwidth. There has been a significant effort to miniaturize the GPS and TM antenna using higher dielectric constant materials. The most popular direction of this effort has been to use ceramic impregnated Teflon. The ultimate temperature performance is the material with a dielectric constant around 2 since this material exhibits a very low coefficient of change with temperature. Materials are available with nominal dielectric constants of 6 and 10 to reduce the size of the antenna but the coefficient of change with temperature is very large and leaves these materials marginal for military temperature ranges. There have also been two other problems with Teflon based printed circuit boards, forming and bonding the boards in a 3D shape and homogeneity of the dielectric constant in the board and after bonding. These problems usually make tuning a requirement and drive the cost of antenna fabrication up. There has been a revolution in MIC's. The circuits are now being made with multiple layers of ceramic (alumina) with interlayer conductive connections and a nominal dielectric constant of 10. The layers are formed in the green state and fired at high temperature and the resulting alumina substrate has a very low coefficient of change with temperature and low loss. Since this procedure is now beyond development, the cost is low and the volume capability is high. Another significant point is that the part can be any shape since the substrate is done in the green state (formable) and then fired.
Vuppala, Verrendra B. "Improvements in fiber optic coupler fabrication techniques." Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-07212009-040455/.
Full textSchuller, Timothy Adam. "Gallium nitride sensor devices fabrication techniques and characterisation." Thesis, University of Bristol, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.549688.
Full textWiltberger, Christine N. "Conservation and fabrication techniques for restoring marezzo scagliola." Virtual Press, 2001. http://liblink.bsu.edu/uhtbin/catkey/1214385.
Full textDepartment of Architecture
Payne, Clare Elizabeth Ann. "Novel fabrication techniques for solid oxide fuel cells." Thesis, Brunel University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318427.
Full textGafford, Joshua B. "Fabrication of high-quality microflexures using micromilling techniques." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/59914.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 50).
This research focuses on the feasibility of using micromilling as a process for fabricating the flexural body of mesoscale nanopositioners. A desire to fabricate non-silicon microflexures for more favorable material properties and flexural responses has led MIT's Precision Compliant Systems lab to investigate the use of various metals in the design of mesoscale six-axis HexFlex nanopositioners. Micromilling is being sought as an alternative method of manufacturing HexFlex flexural bodies due to its inherent process and material flexibility. Cutting forces were approximated (and verified using FEM and previously-measured results) in order to select cutting parameters that would avoid tool failure and ensure workpiece integrity. Several HexFlex devices were successfully micromilled from various aluminum alloys. Total machining time, including setup and tool changes, was around 1.5 hours per part. The integrity of each part was verified using optical microscopy and white-light interferometry to inspect for any microcracks or otherwise unfavorable by-products of the milling process. Ultimately, it was shown that micromilling is a feasible process for manufacturing low-volume to-spec mesoscale nanopositioners (±3 [mu]m) with surface roughnesses of less than 0.300 [mu]m. Process improvements are suggested based on observations before and during the machining process.
by Joshua B. Gafford.
S.B.
Elwell, Clifford Alastair. "The development of magnetic tunnel junction fabrication techniques." Thesis, University of Cambridge, 2002. https://www.repository.cam.ac.uk/handle/1810/34611.
Full textVenkatesan, Sriram. "SURFACE TEXTURES FOR ENHANCED LUBRICATION: FABRICATION AND CHARACTERIZATION TECHNIQUES." Lexington, Ky. : [University of Kentucky Libraries], 2005. http://lib.uky.edu/ETD/ukymeen2005t00274/Venkatesan%5FThesis.pdf.
Full textTitle from document title page (viewed on November 9, 2005). Document formatted into pages; contains viii, 85 p. : ill. Includes abstract and vita. Includes bibliographical references (p. 83-84).
Agusil, Antonoff Juan Pablo. "Fabrication of (bio)molecular patterns with contact printing techniques." Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/297711.
Full textUn patrón es una colección de unidades formadoras que se repiten predeciblemente en una magnitud definida. Los investigadores han utilizado patrones para garantizar la funcionalidad y repetitividad de sus estudios. Para conseguir eso, los datos obtenidos de los estudios se comparan entre varios resultados, esperando así una correlación. Dos métodos de investigación están basados en patrones: uno requiere un sustrato con unidades repetidas localizadas en un plano cartesiano definido, obteniendo una plataforma de análisis múltiple. El segundo método utiliza localizaciones definidas con diferentes áreas de prueba, creando así una plataforma de multianálisis. La miniaturización de estas pruebas permiten reducir el costo, maximizar la eficiencia e incrementar la repetitividad de los ensayos. Los micropatrones consisten en puntos de (bio)moléculas limitados en pequeñas áreas para crear zonas de reacción múltiples. Esta tecnología fue inicialmente utilizada para crear las interacciones del ADN para estudios genómicos. La técnica evolucionó para crear patrones de proteínas y actualmente se utiliza para estudios bioquímicos a gran escala y de muy alto rendimiento. Patrones de una (bio)molécula repetida a través del sustrato son fabricados rutinariamente en muchos laboratorios utilizando técnicas de impresión por contacto, por inyección u otro métodos. El cimiento de estas técnicas es transferir una (bio)molécula de una solución a un sustrato. Esta Tesis pretende expandir los métodos de creación de micropatrones por técnicas de impresión por contacto. Inicialmente se caracterizó una máquina automatizada de impresión por microcontacto para crear patrones y estudiar las variables que afectan al momento de la impresión. Se correlacionaron la presión y el tiempo de impresión para entender la morfología del patrón resultante. Igualmente se caracterizó el posicionamiento micrométrico de los patrones para crear estructuras complejas. Posteriormente, la máquina se modificó para incluir la técnica de impresión con plumas poliméricas. Esta técnica permitió crear micropatrones en superficies minúsculas. Estos micropatrones fueron luego liberados para crear micropartículas que pueden ser personalizadas para aplicaciones diversas. Finalmente, se formuló una nueva técnica de replicación de patrones de ADN desde un patrón inicial, manteniendo la información química y espacial presente en éste.
Fischer, Andreas C. "Integration and Fabrication Techniques for 3D Micro- and Nanodevices." Doctoral thesis, KTH, Mikro- och nanosystemteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-107125.
Full textQC 20121207
Books on the topic "Techniques of fabrication"
Laverghetta, Thomas S. Microwave materials and fabrication techniques. 2nd ed. Boston: Artech House, 1991.
Find full textservice), SpringerLink (Online, ed. Nanophotonic Fabrication: Self-Assembly and Deposition Techniques. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textMaincent, Michel. Cuisine de référence: Préparations et techniques de base : fiches techniques de fabrication. Paris: Éditions BPI, 1993.
Find full textLandreth, Robert E. Inspection techniques for the fabrication of geomembrane field seams. Cincinnati, Ohio: Risk Reduction Engineering Laboratory, U.S. Environmental Protection Agency, 1992.
Find full textMaincent-Morel, Michel. La cuisine de référence: Techniques et préparations de base, fiches techniques de fabrication. Clichy: Éd. BPI, 2002.
Find full textWigley, D. A. Materials and techniques for model construction. Hampton, Va: Kentron International, 1985.
Find full textRichter, Scott W. Technology development of fabrication techniques for advanced solar dynamic concentrators. [Cleveland, Ohio]: Lewis Research Center, 1991.
Find full textCochet, André. Le plomb en Gaule romaine: Techniques de fabrication et produits. Montagnac: Edition M. Mergoil, 2000.
Find full textSusan, Frisch, ed. Metal: Design and fabrication. New York: Whitney Library of Design, 1998.
Find full textBook chapters on the topic "Techniques of fabrication"
Luo, Xiangang. "Fabrication Techniques." In Engineering Optics 2.0, 179–242. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5755-8_5.
Full textPampillón Arce, María Ángela. "Fabrication Techniques." In Growth of High Permittivity Dielectrics by High Pressure Sputtering from Metallic Targets, 21–39. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66607-5_2.
Full textHunsperger, Robert G. "Waveguide Fabrication Techniques." In Integrated Optics, 53–84. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/b98730_4.
Full textHunsperger, Robert G. "Waveguide Fabrication Techniques." In Integrated Optics, 48–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03159-9_4.
Full textHunsperger, Robert G. "Waveguide Fabrication Techniques." In Advanced Texts in Physics, 47–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-540-38843-2_4.
Full textHunsperger, Robert G. "Waveguide Fabrication Techniques." In Springer Series in Optical Sciences, 46–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-540-48730-2_4.
Full textIsmail, Ahmad Fauzi, Kailash Chandra Khulbe, and Takeshi Matsuura. "Membrane Fabrication/Manufacturing Techniques." In Gas Separation Membranes, 193–220. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-01095-3_4.
Full textPoletkin, Kirill. "Micro-Coil Fabrication Techniques." In Microsystems and Nanosystems, 17–21. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58908-0_2.
Full textGuo, Liang, Xinyong Li, and Guohua Chen. "Techniques of Electrode Fabrication." In Electrochemistry for the Environment, 55–98. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-68318-8_3.
Full textMurray, P. T. "Laser-Assisted Fabrication Techniques." In Nanoscale Multifunctional Materials, 125–51. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118114063.ch5.
Full textConference papers on the topic "Techniques of fabrication"
Stahl, H. Philip. "Aspheric Surface Testing Techniques." In Fabrication and Testing of Aspheres. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/fta.1999.t2.
Full textJohnson, Carl, Abdu Boudour, and Eric T. Chase. "Ultra-clean fabrication techniques." In Photomask Japan '94, edited by Hideo Yoshihara. SPIE, 1994. http://dx.doi.org/10.1117/12.191951.
Full textRamey, Delvan A. "Polymer Waveguide Fabrication Techniques." In 1984 Cambridge Symposium, edited by Daniel B. Ostrowsky and Sriram Sriram. SPIE, 1985. http://dx.doi.org/10.1117/12.945145.
Full textMarangoni, Marco, Roberto Osellame, and Roberta Ramponi. "Nonconventional optical characterization techniques of planar waveguides for nonlinear processes." In Photonics Fabrication Europe, edited by Giancarlo C. Righini. SPIE, 2003. http://dx.doi.org/10.1117/12.472000.
Full textMercier, Raymond, Michel Mullot, and Michel Lamare. "Broad Ion-Beam Milling Techniques, Results and Prospects." In Optical Fabrication and Testing. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/oft.2008.othd1.
Full textMaffett, Steven P., and Steven D. O'Donohue. "Optical Testing Techniques for Highly Aspheric Tertiary Mirrors." In Optical Fabrication and Testing. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/oft.2010.otha2.
Full textSchmit, Joanna, Shawn McDermed, and Artur Olszak. "Self-calibrating white-light interferometry techniques for shape measurement." In Optical Fabrication and Testing. Washington, D.C.: OSA, 2002. http://dx.doi.org/10.1364/oft.2002.owd9.
Full textSchindler, Axel, Thomas Hänsel, Frank Frost, Andreas Nickel, Renate Fechner, and Bernd Rauschenbach. "Recent achievements on ion beam techniques for optics fabrication." In Optical Fabrication and Testing. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/oft.2004.omd3.
Full textVerhaegen, Marc, P. Orsini, D. Perron, Xavier Daxhelet, and Suzanne Lacroix. "Long-period grating fabrication techniques." In 2000 International Conference on Application of Photonic Technology (ICAPT 2000), edited by Roger A. Lessard and George A. Lampropoulos. SPIE, 2000. http://dx.doi.org/10.1117/12.406391.
Full textCederquist, J. N., J. R. Fienup, and A. M. Tai. "Cgh Fabrication Techniques And Facilities." In 1988 Los Angeles Symposium--O-E/LASE '88, edited by Sing H. Lee. SPIE, 1988. http://dx.doi.org/10.1117/12.944158.
Full textReports on the topic "Techniques of fabrication"
Kuhlmey, Boris. Fabrication of Metamaterials by Drawing Techniques. Fort Belvoir, VA: Defense Technical Information Center, March 2011. http://dx.doi.org/10.21236/ada538212.
Full textFrame, B., F. Paulauskas, J. Miller, and W. Parzych. Composite material fabrication techniques. CRADA final report. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/10115159.
Full textWerry, E. V., T. E. Gates, K. S. Cabbage, and J. D. Eklund. FY-87 packing fabrication techniques (commercial waste form) results. Office of Scientific and Technical Information (OSTI), April 1988. http://dx.doi.org/10.2172/5137724.
Full textHoward, R. V. Telemetry engineering and fabrication alternative soldering techniques for CFC elimination. Office of Scientific and Technical Information (OSTI), August 1995. http://dx.doi.org/10.2172/95263.
Full textGeorge, Steven M. Fabrication and Properties of Nanolaminates Using Self-Limiting Surface Chemistry Techniques. Fort Belvoir, VA: Defense Technical Information Center, July 2003. http://dx.doi.org/10.21236/ada415471.
Full textAder, Christine R. Overview of Fabrication Techniques and Lessons Learned With Accelerator Vacuum Windows. Office of Scientific and Technical Information (OSTI), April 2018. http://dx.doi.org/10.2172/1460567.
Full textGeorge, Steven M. Fabrication and Properties of Organic-Inorganic Nanolaminates Using Molecular and Atomic Layer Deposition Techniques. Fort Belvoir, VA: Defense Technical Information Center, February 2012. http://dx.doi.org/10.21236/ada582180.
Full textArmstrong, J. M., M. S. Misra, and B. Lanning. Innovative Sputtering Techniques for CIS and CdTe Submodule Fabrication, Annual Subcontract Report, 1 September 1991 - 31 August 1992. Office of Scientific and Technical Information (OSTI), March 1993. http://dx.doi.org/10.2172/6727780.
Full textPyon, Taeyoung, and Eric Gregory. Fabrication of Nb{sub 3}Al superconducting strands using mechanical alloying and other techniques. Phase II final report. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/804906.
Full textFisher, M. L., and V. K. Kapur. CIS-Type PV Device Fabrication by Novel Techniques; Phase II Subcontract Report 1 July 1999--31 June 2000. Office of Scientific and Technical Information (OSTI), January 2001. http://dx.doi.org/10.2172/776184.
Full text