Journal articles on the topic 'Technology / Electronics / Optoelectronics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Technology / Electronics / Optoelectronics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kausar, Ayesha, Ishaq Ahmad, Malik Maaza, M. H. Eisa, and Patrizia Bocchetta. "Polymer/Fullerene Nanocomposite for Optoelectronics—Moving toward Green Technology." Journal of Composites Science 6, no. 12 (2022): 393. http://dx.doi.org/10.3390/jcs6120393.
Full textSoref, Richard. "Applications of Silicon-Based Optoelectronics." MRS Bulletin 23, no. 4 (1998): 20–24. http://dx.doi.org/10.1557/s0883769400030220.
Full textCoffa, Salvatore, and Leonid Tsybeskov. "Silicon-Based Optoelectronics." MRS Bulletin 23, no. 4 (1998): 16–19. http://dx.doi.org/10.1557/s0883769400030219.
Full textAvouris, Phaedon. "Carbon Nanotube Electronics and Optoelectronics." MRS Bulletin 29, no. 6 (2004): 403–10. http://dx.doi.org/10.1557/mrs2004.123.
Full textXie, Ling-Hai, Su-Hui Yang, Jin-Yi Lin, Ming-Dong Yi, and Wei Huang. "Fluorene-based macromolecular nanostructures and nanomaterials for organic (opto)electronics." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, no. 2000 (2013): 20120337. http://dx.doi.org/10.1098/rsta.2012.0337.
Full textTorres-Costa, Vicente. "Nanostructures for Photonics and Optoelectronics." Nanomaterials 12, no. 11 (2022): 1820. http://dx.doi.org/10.3390/nano12111820.
Full textKuo, Yue. "(Invited) Plasma-Based Thin Film Technology in Fabrication of Nano- to Giga-Sized Electronics." ECS Meeting Abstracts MA2022-02, no. 30 (2022): 1106. http://dx.doi.org/10.1149/ma2022-02301106mtgabs.
Full textHo, Johnny C. "(Invited) Flexible Electronic Devices Based on Low-Dimensional Nanomaterials and Their Integration Technologies." ECS Meeting Abstracts MA2024-02, no. 35 (2024): 2473. https://doi.org/10.1149/ma2024-02352473mtgabs.
Full textSotor, Jarosław, Krzysztof Abramski, Arkadiusz Antończak, et al. "Laser and Fiber Electronics Group." Photonics Letters of Poland 11, no. 2 (2019): 38. http://dx.doi.org/10.4302/plp.v11i2.901.
Full textJagadish, Chennupati. "(Dielectric Science &Technology Thomas D. Callinan Award) Semiconductor Nanostructures for Optoelectronics and Energy Applications." ECS Meeting Abstracts MA2023-01, no. 20 (2023): 1503. http://dx.doi.org/10.1149/ma2023-01201503mtgabs.
Full textDmitriev, Alex A., Alex S. Dmitriev, and Inna Mikhailova. "New Nanocompoite Thermal Interface Materials Based on Graphene Flakes, Mesoscopic Microspheres and Polymers." MATEC Web of Conferences 207 (2018): 04002. http://dx.doi.org/10.1051/matecconf/201820704002.
Full textChen, Jifan. "Two-Dimensional Semiconductor Materials." Transactions on Computer Science and Intelligent Systems Research 7 (November 25, 2024): 185–94. https://doi.org/10.62051/4mqtv311.
Full textLieber, Charles M., and Zhong Lin Wang. "Functional Nanowires." MRS Bulletin 32, no. 2 (2007): 99–108. http://dx.doi.org/10.1557/mrs2007.41.
Full textXiong, Weixiang. "Advanced Electronics: The Emergence, Evolution, and Future of Gallium Nitride Technology." Transactions on Computer Science and Intelligent Systems Research 5 (August 12, 2024): 693–97. http://dx.doi.org/10.62051/akz0c726.
Full textKim, Sunjae, Minje Kim, Jihyun Kim та Wan Sik Hwang. "Plasma Nitridation Effect on β-Ga2O3 Semiconductors". Nanomaterials 13, № 7 (2023): 1199. http://dx.doi.org/10.3390/nano13071199.
Full textGrigorenko, M. F., E. P. Chernigovtsev, and V. V. Poluyanska. "Gallium oxide a prospective multifunctional material of the fourth generation (review)." Uspihi materialoznavstva 2024, no. 8-9 (2024): 66–81. https://doi.org/10.15407/materials2024.08-09.007.
Full textXu, Jikai, Yu Du, Yanhong Tian, and Chenxi Wang. "Progress in wafer bonding technology towards MEMS, high-power electronics, optoelectronics, and optofluidics." International Journal of Optomechatronics 14, no. 1 (2020): 94–118. http://dx.doi.org/10.1080/15599612.2020.1857890.
Full textHuang, Yu, and C. M. Lieber. "Integrated nanoscale electronics and optoelectronics: Exploring nanoscale science and technology through semiconductor nanowires." Pure and Applied Chemistry 76, no. 12 (2004): 2051–68. http://dx.doi.org/10.1351/pac200476122051.
Full textRomaniuk, Ryszard S. "Wilga 2019 – Photonics Applications." Photonics Letters of Poland 11, no. 2 (2019): 35. http://dx.doi.org/10.4302/plp.v11i2.900.
Full textMafra, D. L., T. Ming, and J. Kong. "Facile graphene transfer directly to target substrates with a reusable metal catalyst." Nanoscale 7, no. 36 (2015): 14807–12. http://dx.doi.org/10.1039/c5nr03892h.
Full textHeydari Gharahcheshmeh, Meysam, and Karen K. Gleason. "Recent Progress in Conjugated Conducting and Semiconducting Polymers for Energy Devices." Energies 15, no. 10 (2022): 3661. http://dx.doi.org/10.3390/en15103661.
Full textCao, Zhifang. "Pulsed Optoelectronic Rangefinder and Its Measurement Applications in Architectural Design Rationality Assessment." Journal of Nanoelectronics and Optoelectronics 18, no. 10 (2023): 1211–20. http://dx.doi.org/10.1166/jno.2023.3498.
Full textSingh, Yadvendra, and Harish Subbaraman. "Recent Advances in Graphene-Enabled Silicon-Based High-Speed Optoelectronic Devices—A Review." Photonics 10, no. 12 (2023): 1292. http://dx.doi.org/10.3390/photonics10121292.
Full textGurunathan, K., A. Vadivel Murugan, R. Marimuthu, U. P. Mulik, and D. P. Amalnerkar. "Electrochemically synthesised conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices." Materials Chemistry and Physics 61, no. 3 (1999): 173–91. http://dx.doi.org/10.1016/s0254-0584(99)00081-4.
Full textFuhrer, Michael S., Chun Ning Lau, and Allan H. MacDonald. "Graphene: Materially Better Carbon." MRS Bulletin 35, no. 4 (2010): 289–95. http://dx.doi.org/10.1557/mrs2010.551.
Full textZika, F., M. Albagul, W. Zhang, S. A. Chodavarapu, R. Quaglia, and A. Albagul. "Gallium Oxide and Its Applications in Electronics: An Overview." WSEAS TRANSACTIONS ON ELECTRONICS 15 (December 6, 2024): 118–27. https://doi.org/10.37394/232017.2024.15.14.
Full textMurzin, Serguei P., and Christian Stiglbrunner. "Fabrication of Smart Materials Using Laser Processing: Analysis and Prospects." Applied Sciences 14, no. 1 (2023): 85. http://dx.doi.org/10.3390/app14010085.
Full textМихайлова, М. П., К. Д. Моисеев та Ю. П. Яковлев. "Открытие полупроводников A-=SUP=-III-=/SUP=-B-=SUP=-V-=/SUP=-: физические свойства и применение (О б з о р)". Физика и техника полупроводников 53, № 3 (2019): 291. http://dx.doi.org/10.21883/ftp.2019.03.47278.8998.
Full textChen, Huamin, Yun Xu, Jiushuang Zhang, Weitong Wu, and Guofeng Song. "Self-Powered Flexible Blood Oxygen Monitoring System Based on a Triboelectric Nanogenerator." Nanomaterials 9, no. 5 (2019): 778. http://dx.doi.org/10.3390/nano9050778.
Full textKumar, Ashwani, Sheetal Singh, and Divyanshu Shukla. "Preparation Properties and Device Application of ?- Ga2O3: A Review." International Journal for Research in Applied Science and Engineering Technology 10, no. 8 (2022): 360–74. http://dx.doi.org/10.22214/ijraset.2022.46195.
Full textKumar, Ashwani, Sheetal Singh, and Divyanshu Shukla. "Preparation Properties and Device Application of ?- Ga2O3: A Review." International Journal for Research in Applied Science and Engineering Technology 10, no. 8 (2022): 360–74. http://dx.doi.org/10.22214/ijraset.2022.46195.
Full textTorres-Moya, Iván. "The New Era of Organic Field-Effect Transistors: Hybrid OECTs, OLEFETs and OFEWs." Applied Sciences 14, no. 18 (2024): 8454. http://dx.doi.org/10.3390/app14188454.
Full textMaruyama, Shigeo, Michael S. Arnold, Ralph Krupke, and Lian-Mao Peng. "Physics and applications of nanotubes." Journal of Applied Physics 131, no. 8 (2022): 080401. http://dx.doi.org/10.1063/5.0087075.
Full textRen, Fang, Bingyao Liu, Zhaolong Chen, et al. "Van der Waals epitaxy of nearly single-crystalline nitride films on amorphous graphene-glass wafer." Science Advances 7, no. 31 (2021): eabf5011. http://dx.doi.org/10.1126/sciadv.abf5011.
Full textSun, Yuewei. "Overview of Diamond Semiconductor Development and Research Directions." Applied and Computational Engineering 147, no. 1 (2025): 121–26. https://doi.org/10.54254/2755-2721/2025.22582.
Full textSuber, Lorenza, and Gaetano Campi. "Hierarchic self-assembling of silver nanoparticles in solution." Nanotechnology Reviews 1, no. 1 (2012): 57–78. http://dx.doi.org/10.1515/ntrev-2011-0004.
Full textS, Anil Subash, Shubha MB, Yash N. Athreya, Ajit Khosla, and Manjunatha C. "Advances in Printable, Flexible and Transparent Graphene Photodetectors for Optoelectronics Applications." ECS Transactions 107, no. 1 (2022): 18681–95. http://dx.doi.org/10.1149/10701.18681ecst.
Full textRavindra, Nuggehalli M., Samiha Hossain, and Airefetalo Sadoh. "Principles, properties and preparation of thermochromic materials." Material Science & Engineering International Journal 7, no. 3 (2023): 146–56. http://dx.doi.org/10.15406/mseij.2023.07.00218.
Full textHoang, Tu, Jisk Holleman, and Jurriaan Schmitz. "SOI-LEDs with Carrier Confinement." Materials Science Forum 590 (August 2008): 101–16. http://dx.doi.org/10.4028/www.scientific.net/msf.590.101.
Full textMurzin, Serguei P., and Nikolay L. Kazanskiy. "Creation of One- and Two-Dimensional Copper and Zinc Oxides Semiconductor Structures." Applied Sciences 13, no. 20 (2023): 11459. http://dx.doi.org/10.3390/app132011459.
Full textGuo, Yizhe, Yancong Qiao, Tianrui Cui, et al. "Electrospun Nanofibers for Integrated Sensing, Storage, and Computing Applications." Applied Sciences 12, no. 9 (2022): 4370. http://dx.doi.org/10.3390/app12094370.
Full textGuo, Yizhe, Yancong Qiao, Tianrui Cui, et al. "Electrospun Nanofibers for Integrated Sensing, Storage, and Computing Applications." Applied Sciences 12, no. 9 (2022): 4370. http://dx.doi.org/10.3390/app12094370.
Full textOlyaee, Saeed. "Ultra-fast and compact all-optical encoder based on photonic crystal nano-resonator without using nonlinear materials." Photonics Letters of Poland 11, no. 1 (2019): 10. http://dx.doi.org/10.4302/plp.v11i1.890.
Full textCama, Eleonora Sofia, Mariacecilia Pasini, Francesco Galeotti, and Umberto Giovanella. "Transparent Electrodes Based on Crack-Templated Metallic Networks for Next-Generation Optoelectronics." Materials 18, no. 13 (2025): 3091. https://doi.org/10.3390/ma18133091.
Full textGuisinger, Nathan P., and Michael S. Arnold. "Beyond Silicon: Carbon-Based Nanotechnology." MRS Bulletin 35, no. 4 (2010): 273–79. http://dx.doi.org/10.1557/mrs2010.729.
Full textVlasenko, O. I. "INDUCED RESTRUCTURING OF THE CRYSTAL STRUCTURE AND ACOUSTIC RESPONSE IN SEMICONDUCTORS BASED ON CADMIUM TELLURIDE FOR USE IN OPTOELECTRONICS AND TOPICAL AREAS OF SEMICONDUCTOR TECHNOLOGY (REVIEW)." Optoelektronìka ta napìvprovìdnikova tehnìka 57 (December 30, 2022): 43–70. http://dx.doi.org/10.15407/iopt.2022.57.043.
Full textMiluski, Piotr, Marcin Kochanowicz, Jacek Zmojda, and Dominik Dorosz. "Multicolor emission of Tb3+/Eu3+ co-doped poly(methyl methacrylate) for optical fibre technology." Photonics Letters of Poland 9, no. 4 (2017): 110. http://dx.doi.org/10.4302/plp.v9i4.788.
Full textHan, Xinqing, Cong Liu, Meng Zhang, Qing Huang, Xuelin Wang, and Peng Liu. "Thermal Spike Responses and Structure Evolutions in Lithium Niobate on Insulator (LNOI) under Swift Ion Irradiation." Crystals 12, no. 7 (2022): 943. http://dx.doi.org/10.3390/cryst12070943.
Full textBajaj, Samiksha, and Jyh Ming Wu. "Phase Transition Engineering of Vanadium Dioxide Induced by Oxygen Vacancies." ECS Meeting Abstracts MA2023-02, no. 34 (2023): 1646. http://dx.doi.org/10.1149/ma2023-02341646mtgabs.
Full textLischke, S., A. Peczek, J. S. Morgan, et al. "Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz." Nature Photonics 15, no. 12 (2021): 925–31. http://dx.doi.org/10.1038/s41566-021-00893-w.
Full text