To see the other types of publications on this topic, follow the link: Technology in medicine.

Journal articles on the topic 'Technology in medicine'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Technology in medicine.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Wang, Ci Nian. "RFID Technology Applied in Medicine Distribution Center." Applied Mechanics and Materials 651-653 (September 2014): 2040–44. http://dx.doi.org/10.4028/www.scientific.net/amm.651-653.2040.

Full text
Abstract:
After a full analysis of the principle and general structure of Medicine Distribution Center (MDC), this paper researches the application of RFID (Radio Frequency Identification) in MDC. The MDC adopts the RFID as the support platform, covering the medicines’ entry, picking, checking, delivery and many other operation flows. The paper also constructs a new medicine-distribution mode and its information system model in accordance with GPS (global positioning system), GIS (geographical information system) and routing optimization technology. The MDC can collect, deliver, check, and update mass data on the medicines’ entry and delivery, the labor intensity being decreased. Fault scanning, miss scanning, re-scanning and other artificial errors have been avoided, and the efficiency and accuracy improved.
APA, Harvard, Vancouver, ISO, and other styles
2

Kuppersmith, Ronald B. "Medicine and Technology." Ear, Nose & Throat Journal 84, no. 10 (October 2005): 618. http://dx.doi.org/10.1177/014556130508401002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Stukalov, A. A., S. V. Khodus, and E. A. Kolechkina. "PRECLINICAI TECHNOLOGY FOR DOCTORS BY SPECIALITY ANESTHESIOLOGY-CRITICAL CARE MEDICINE." Amur Medical Journal, no. 15-16 (2016): 109–11. http://dx.doi.org/10.22448/amj.2016.15-16.109-111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

OKA, HISASHI. "Evidence Based Medicine for Nuclear Medicine Technology(Evidence-Based Radiological Technology)." Japanese Journal of Radiological Technology 61, no. 11 (2005): 1486–89. http://dx.doi.org/10.6009/jjrt.kj00004010664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

DOHI, Takeyoshi. "Robot technology in medicine." Journal of the Robotics Society of Japan 8, no. 5 (1990): 583–87. http://dx.doi.org/10.7210/jrsj.8.5_583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

KAWAOKA, Shinpei, and Narutoku SATO. "iOragns Technology and Medicine." TRENDS IN THE SCIENCES 22, no. 7 (2017): 7_83–7_87. http://dx.doi.org/10.5363/tits.22.7_83.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Connor, J. T. H. "The Technology of Medicine." Canadian Bulletin of Medical History 6, no. 1 (April 1989): 67–70. http://dx.doi.org/10.3138/cbmh.6.1.67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mackinnon, Malcolm. "Information technology in medicine." Medical Journal of Australia 167, no. 11-12 (December 1997): 574. http://dx.doi.org/10.5694/j.1326-5377.1997.tb138901.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hajar, Rachel. "Art, Medicine and Technology." Heart Views 15, no. 4 (2014): 135. http://dx.doi.org/10.4103/1995-705x.151097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stackhouse, Will. "Technology, Sociology, and Medicine." Mayo Clinic Proceedings 74, no. 8 (August 1999): 841–43. http://dx.doi.org/10.4065/74.8.841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Bauchner, H. "Information technology-improving medicine." Archives of Disease in Childhood 86, no. 3 (March 1, 2002): 223. http://dx.doi.org/10.1136/adc.86.3.223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Dohi, Takeyoshi. "Robot technology in medicine." Advanced Robotics 7, no. 2 (January 1992): 179–87. http://dx.doi.org/10.1163/156855393x00104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Littenberg, B. "Technology assessment in medicine." Academic Medicine 67, no. 7 (July 1992): 424–8. http://dx.doi.org/10.1097/00001888-199207000-00002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ehrfeld, W., and Ch Schulz. "Microstructure Technology in Medicine." International Journal of Artificial Organs 20, no. 9 (September 1997): 492. http://dx.doi.org/10.1177/039139889702000903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zealley, H. "Ethics, Technology and Medicine." Journal of Medical Ethics 15, no. 4 (December 1, 1989): 220–21. http://dx.doi.org/10.1136/jme.15.4.220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Maddox, John. "New technology of medicine." Nature 321, no. 6073 (June 1986): 807. http://dx.doi.org/10.1038/321807a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Jensen, Pamela S. "Science, Technology and Medicine." Investigative Radiology 20, no. 4 (July 1985): 432–34. http://dx.doi.org/10.1097/00004424-198507000-00022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Tao, Ou, Yan Ling Zhang, Yun Wang, and Yan Jiang Qiao. "The Application of Virtual Simulation Technology in Chinese Herbal Medicine Teaching." Advanced Materials Research 271-273 (July 2011): 1688–93. http://dx.doi.org/10.4028/www.scientific.net/amr.271-273.1688.

Full text
Abstract:
Virtual simulation technology plays an important role in educational engineering. The limitation of enough Chinese herbal medicines and instrument obscured the better understanding of Traditional Chinese Medicine (TCM). In this paper, the concept of virtual simulation technology and its application was outlined in the teaching of TCM theory and experiments. The superiority and insufficiency of this technology was also approached. The basic idea on building a virtual teaching and simulation platform for TCM was discussed, which may provide referred methods in the innovation of Chinese medicine teaching.
APA, Harvard, Vancouver, ISO, and other styles
19

Avent, Neil. "Recombinant Technology in Transfusion Medicine." Current Pharmaceutical Biotechnology 1, no. 2 (September 1, 2000): 117–35. http://dx.doi.org/10.2174/1389201003378951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

KOVALENKO, A., LYUDMILA KOZAK, and O. ROMANYUK. "Information Technology of Digital Medicine." Kibernetika i vyčislitelʹnaâ tehnika 2017, no. 1(187) (April 3, 2017): 67–79. http://dx.doi.org/10.15407/kvt187.01.067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kim, Chul-Ho. "New Conversing Technology; Plasma Medicine." Korean Journal of Otorhinolaryngology-Head and Neck Surgery 53, no. 10 (2010): 593. http://dx.doi.org/10.3342/kjorl-hns.2010.53.10.593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Anderson, Carl F. "Science and Technology in Medicine." Mayo Clinic Proceedings 81, no. 8 (August 2006): 1132. http://dx.doi.org/10.4065/81.8.1132-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Carney, Pamela H. "Information Technology and Precision Medicine." Seminars in Oncology Nursing 30, no. 2 (May 2014): 124–29. http://dx.doi.org/10.1016/j.soncn.2014.03.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Cohen, E. J. "Information Technology Comes to Medicine." Yearbook of Ophthalmology 2008 (January 2008): 277–80. http://dx.doi.org/10.1016/s0084-392x(08)79042-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Wolpe, Paul Root. "Medicine, Technology, and Lived Relations." Perspectives in Biology and Medicine 28, no. 2 (1985): 314–22. http://dx.doi.org/10.1353/pbm.1985.0061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Hall, Christo. "Technology for combating counterfeit medicine." Pathogens and Global Health 106, no. 2 (May 2012): 73–76. http://dx.doi.org/10.1179/204777312x13419245939485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Hoffman, Alan C. "Law, Medicine, and Medical Technology." Journal of Legal Medicine 24, no. 3 (September 2003): 407–11. http://dx.doi.org/10.1080/713832191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Macko, M., Z. Szczepański, D. Mikołajewski, E. Mikołajewska, and J. Furtak. "3D technology implementation in medicine." IOP Conference Series: Materials Science and Engineering 776 (April 2, 2020): 012038. http://dx.doi.org/10.1088/1757-899x/776/1/012038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lansdown, Richard. "Funding of High Technology Medicine." Journal of the Royal Society of Medicine 82, no. 9 (September 1989): 568–69. http://dx.doi.org/10.1177/014107688908200929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

KINOSHITA, Fujimi. "New Technology for Nuclear Medicine." Japanese Journal of Radiological Technology 55, no. 3 (1999): 225–30. http://dx.doi.org/10.6009/jjrt.kj00003110459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Macklis, Roger M., and Nidhi Sharma. "Convergence technology in cancer medicine." Expert Review of Medical Devices 8, no. 2 (March 2011): 263–73. http://dx.doi.org/10.1586/erd.10.86.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Vinall, P., and M. Dawson. "New Technology in Emergency Medicine." MD Conference Express 14, no. 46 (December 1, 2014): 8. http://dx.doi.org/10.1177/155989771446003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Bonatti, Johannes, George Vetrovec, Celia Riga, Oussama Wazni, and Petr Stadler. "Robotic technology in cardiovascular medicine." Nature Reviews Cardiology 11, no. 5 (March 25, 2014): 266–75. http://dx.doi.org/10.1038/nrcardio.2014.23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Jigalin, A., and H. Lerch. "Information technology and nuclear medicine." Nuklearmedizin 43, no. 06 (2004): 181–84. http://dx.doi.org/10.1055/s-0038-1623913.

Full text
Abstract:
ZusammenfassungZiel und Methode: In einer retrospektiven Analyse wurden die wissenschaftlichen Veröffentlichungen der Zeitschrift Nuklearmedizin. Journal of Functional and Molecular Imaging der Jahrgänge 2002 und 2003 hinsichtlich der Entwicklung informationstechnologischer Methoden ausgewertet. Ergebnisse: Von 79 Original-arbeiten und Kasuistiken wurden 9 (11%) als Original-arbeiten mit Informationstechnologie als Untersuchungsobjekt, davon 5 (56%) mit Fusion von molekularer und morphologischer Bildgebung als Thema, klassifiziert. Dabei entstanden 7 (78%) der 9 Arbeiten unter Mitautorenschaft anderer medizinischer Fachrichtungen; von 8 der Originalarbeiten waren 4 (50%) prospektiv angelegt. Von den 59 Originalarbeiten dienten 28 (47%) vorwiegend der methodischen Entwicklung. 46/59 (78%) Originalarbeiten waren klinische und 2 (3%) experimentelle Forschung. Schlussfolgerung: Obwohl ein hoher Anteil aller Arbeiten der methodischen Entwicklung diente, ist der Anteil der Entwicklung informationstechnologischer Methoden relativ gering.
APA, Harvard, Vancouver, ISO, and other styles
35

Blumenthal, David, and John P. Glaser. "Information Technology Comes to Medicine." New England Journal of Medicine 356, no. 24 (June 14, 2007): 2527–34. http://dx.doi.org/10.1056/nejmhpr066212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Henderson, Gail E., Elizabeth A. Murphy, Samuel T. Sockwell, Zhou Jiongliang, Shen Qingrui, and Li Zhiming. "High-Technology Medicine in China." New England Journal of Medicine 318, no. 15 (April 14, 1988): 1000–1004. http://dx.doi.org/10.1056/nejm198804143181528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Selby, John B. "Nuclear Medicine Technology and Techniques." Clinical Nuclear Medicine 16, no. 5 (May 1991): 380–81. http://dx.doi.org/10.1097/00003072-199105000-00023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Goodman, NevilleW. "Is high-technology medicine relevant?" Lancet 335, no. 8687 (February 1990): 478–79. http://dx.doi.org/10.1016/0140-6736(90)90714-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Antao, Nicholas A. "Wither Clinical Medicine, Enter Technology!" Indian Journal of Orthopaedics 54, no. 6 (October 19, 2020): 743–44. http://dx.doi.org/10.1007/s43465-020-00256-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Hassanali, Muhammed. "Science and Technology in Medicine." Annals of Biomedical Engineering 35, no. 9 (June 2, 2007): 1645. http://dx.doi.org/10.1007/s10439-007-9336-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Azam, Aa Haeruman, Xin-Ee Tan, Srivani Veeranarayanan, Kotaro Kiga, and Longzhu Cui. "Bacteriophage Technology and Modern Medicine." Antibiotics 10, no. 8 (August 18, 2021): 999. http://dx.doi.org/10.3390/antibiotics10080999.

Full text
Abstract:
The bacteriophage (or phage for short) has been used as an antibacterial agent for over a century but was abandoned in most countries after the discovery and broad use of antibiotics. The worldwide emergence and high prevalence of antimicrobial-resistant (AMR) bacteria have led to a revival of interest in the long-forgotten antibacterial therapy with phages (phage therapy) as an alternative approach to combatting AMR bacteria. The rapid progress recently made in molecular biology and genetic engineering has accelerated the generation of phage-related products with superior therapeutic potentials against bacterial infection. Nowadays, phage-based technology has been developed for many purposes, including those beyond the framework of antibacterial treatment, such as to suppress viruses by phages, gene therapy, vaccine development, etc. Here, we highlighted the current progress in phage engineering technology and its application in modern medicine.
APA, Harvard, Vancouver, ISO, and other styles
42

Li, Lin, Li Wang, Wenxiang Fan, Yun Jiang, Chao Zhang, Jianghua Li, Wei Peng, and Chunjie Wu. "The Application of Fermentation Technology in Traditional Chinese Medicine: A Review." American Journal of Chinese Medicine 48, no. 04 (January 2020): 899–921. http://dx.doi.org/10.1142/s0192415x20500433.

Full text
Abstract:
In Chinese medicine, fermentation is a highly important processing technology whereby medicinal herbs are fermented under appropriate temperature, humidity, and moisture conditions by means of the action of microorganisms to enhance their original characteristics and/or produce new effects. This expands the scope of such medicines and helps them to meet the stringent demands of clinical application. Since ancient times, Chinese medicine has been made into Yaoqu to reduce its toxicity and increase its efficiency. Modern fermentation technologies have been developed on the basis of traditional fermentation techniques and modern biological technology, and they can be divided into solid fermentation, liquid fermentation, and two-way fermentation technologies according to the fermentation form employed. This review serves as an introduction to traditional fermentation technology and its related products, modern fermentation technologies, and the application of fermentation technology in the field of Chinese medicine. Several problems and challenges facing the field are also briefly discussed.
APA, Harvard, Vancouver, ISO, and other styles
43

Kumar, Vikram S., and Molly Webster. "Technology Corner: New Technology and Its Applications to Laboratory Medicine." Clinical Chemistry 57, no. 7 (July 1, 2011): 1086–87. http://dx.doi.org/10.1373/clinchem.2011.167163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Naughton, Bernard D. "Medicine authentication technology: a quantitative study of incorrect quarantine, average response times and offline issues in a hospital setting." BMJ Open 9, no. 2 (February 2019): e026619. http://dx.doi.org/10.1136/bmjopen-2018-026619.

Full text
Abstract:
ObjectivesTo introduce serialised medicines into an operational hospital dispensary and assess the technical effectiveness of digital medicine authentication (MA) technology under European Union Falsified Medicines Directive (EU FMD) conditions.DesignThirty medicine lines were serialised using 2D data matrix labels and introduced into an operational UK National Health Service (NHS) hospital dispensary. Staff were asked to check medicines for two-dimensional (2D) data matrices and scan those products, in addition to their usual medicine preparation and checking processes. Four per cent of the study medicines were labelled with a 2D barcode which generated a pop-up, identifying the medicine as either authenticated elsewhere (falsified), authenticated here, expired or recalled.SettingAn NHS teaching hospital based in the UK, the same site as the Naughtonet al2016 study.ParticipantsGeneral Pharmaceutical Council registered, accredited accuracy checking technicians and pharmacists.Primary outcome measuresAverage response times, offline issues, instances of incorrect quarantine and workarounds. The EU FMD maximum response time is 300 milliseconds (ms).ResultsDuring the checking stage of medicine preparation, the average response time for MA in this study was 131 ms. However, 4.67% of attempted authentications experienced offline issues, an increase of 4.23% from the previous study. An increase in offline instances existed alongside an increase in incorrect quarantine.ConclusionsDigital drug screening has the capability of operating with average response times which are below the maximum EU FMD limit of 300 ms. However, there was an increased incidence of offline errors and cases of incorrect quarantine. The practical and legal implications of supplying a substandard or falsified medicine during offline periods without prior authentication or withholding supply until online status resumes are not yet fully understood.
APA, Harvard, Vancouver, ISO, and other styles
45

Katsuma, Susumu, and Gozoh Tsujimoto. "Genome medicine promised by microarray technology." Expert Review of Molecular Diagnostics 1, no. 4 (November 2001): 377–82. http://dx.doi.org/10.1586/14737159.1.4.377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Williamson, John H. "Technology and the traditions of medicine." Medical Journal of Australia 173, no. 3 (August 2000): 168. http://dx.doi.org/10.5694/j.1326-5377.2000.tb125590.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Loch, R. J. "Practical Mathematics in Nuclear Medicine Technology." Journal of Nuclear Medicine Technology 40, no. 4 (August 14, 2012): 293. http://dx.doi.org/10.2967/jnmt.112.108639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

KL, Sampath. "Role of Nano -technology in Medicine." Narayana Medical Journal 8, no. 2 (2019): 54. http://dx.doi.org/10.5455/nmj./00000167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Niu, Bing. "Advancement of Technology for Precision Medicine." Current Pharmaceutical Design 25, no. 40 (January 1, 2020): 4221–22. http://dx.doi.org/10.2174/138161282540191230093056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Goodwin, Cathy. "History of Science, Technology, and Medicine." Charleston Advisor 12, no. 1 (July 1, 2010): 25–27. http://dx.doi.org/10.5260/chara.12.1.25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography