To see the other types of publications on this topic, follow the link: Tellurium – Optical properties.

Journal articles on the topic 'Tellurium – Optical properties'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Tellurium – Optical properties.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Roginskii, E. M., M. B. Smirnov, O. Noguera, O. Masson, and P. Thomas. "Nonlinear optical properties of tellurium oxide nanoclusters." Journal of Physics: Conference Series 1461 (March 2020): 012137. http://dx.doi.org/10.1088/1742-6596/1461/1/012137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lu, Chaoyu, Xueming Li, Libin Tang, et al. "Tellurium quantum dots: Preparation and optical properties." Applied Physics Letters 111, no. 6 (2017): 063112. http://dx.doi.org/10.1063/1.4993819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Arab, Fatemeh, Mehdi Mousavi-Kamazani, and Masoud Salavati-Niasari. "Synthesis, characterization, and optical properties of Te, Te/TeO2 and TeO2 nanostructures via a one-pot hydrothermal method." RSC Advances 6, no. 75 (2016): 71472–80. http://dx.doi.org/10.1039/c6ra10770b.

Full text
Abstract:
Herein, tellurium (Te), tellurium dioxide (TeO<sub>2</sub>) and Te/TeO<sub>2</sub> nanostructures were successfully synthesized via a one-pot hydrothermal route using TeCl<sub>4</sub> as a tellurium source.
APA, Harvard, Vancouver, ISO, and other styles
4

Yamamoto, I., Y. Ohmasa, H. Ikeda, and H. Endo. "The optical properties of tellurium under high pressure." Journal of Physics: Condensed Matter 7, no. 22 (1995): 4299–312. http://dx.doi.org/10.1088/0953-8984/7/22/012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ikemoto, Hiroyuki, Itsuro Yamamoto, and Hirohisa Endo. "The optical properties of liquid selenium and tellurium." Journal of Non-Crystalline Solids 117-118 (February 1990): 493–96. http://dx.doi.org/10.1016/0022-3093(90)90982-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhao, A., L. Zhang, Y. Pang, and C. Ye. "Ordered tellurium nanowire arrays and their optical properties." Applied Physics A 80, no. 8 (2004): 1725–28. http://dx.doi.org/10.1007/s00339-003-2452-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Jinjin, Yanrong Guo, Hong Shen, et al. "A first-principles study of strain tuned optical properties in monolayer tellurium." RSC Advances 9, no. 71 (2019): 41703–8. http://dx.doi.org/10.1039/c9ra08515g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hoover, Gabrielle C., and Dwight S. Seferos. "Photoactivity and optical applications of organic materials containing selenium and tellurium." Chemical Science 10, no. 40 (2019): 9182–88. http://dx.doi.org/10.1039/c9sc04279b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Shun, Weipeng Guan, Dekun Ma, et al. "Synthesis, characterization and optical properties of flower-like tellurium." CrystEngComm 12, no. 1 (2010): 166–71. http://dx.doi.org/10.1039/b905053c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Berthereau, A., Y. Le Luyer, R. Olazcuaga, et al. "Nonlinear optical properties of some tellurium (IV) oxide glasses." Materials Research Bulletin 29, no. 9 (1994): 933–41. http://dx.doi.org/10.1016/0025-5408(94)90053-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Хоркин, В. С., В. Б. Волошинов, А. И. Ефимова та Л. А. Кулакова. "Акустооптические свойства сплавов на основе германия, селена, кремния и теллура". Журнал технической физики 128, № 2 (2020): 250. http://dx.doi.org/10.21883/os.2020.02.48970.151-19.

Full text
Abstract:
We examined the acoustical, optical and acousto-optical properties amorphous alloys based on germanium, selenium, silicium and tellurium. The phase velocities of longitudinal acoustic waves and the value of acousto-optic figure of merit of the tellurium-based compounds were measured using the infrared sources of light radiation on the wavelength λ = 3.39 μm. We measured the acousto-optic figure of merit of germanium single crystal in case of diffraction on the acoustic modes along [110] and [111].
APA, Harvard, Vancouver, ISO, and other styles
12

Menéndez-Proupin, E., and W. Orellana. "Tellurium vacancy in cadmium telluride revisited: Size effects in the electronic properties." physica status solidi (b) 252, no. 12 (2015): 2649–56. http://dx.doi.org/10.1002/pssb.201552357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

de Araujo, Cid Bartolomeu, Diego Silvério da Silva, Thiago Alexandre Alves de Assumpção, Luciana Reyes Pires Kassab, and Davinson Mariano da Silva. "Enhanced Optical Properties of Germanate and Tellurite Glasses Containing Metal or Semiconductor Nanoparticles." Scientific World Journal 2013 (2013): 1–13. http://dx.doi.org/10.1155/2013/385193.

Full text
Abstract:
Germanium- and tellurium-based glasses have been largely studied due to their recognized potential for photonics. In this paper, we review our recent studies that include the investigation of the Stokes and anti-Stokes photoluminescence (PL) in different glass systems containing metallic and semiconductor nanoparticles (NPs). In the case of the samples with metallic NPs, the enhanced PL was attributed to the increased local field on the rare-earth ions located in the proximity of the NPs and/or the energy transfer from the metallic NPs to the rare-earth ions. For the glasses containing silicon
APA, Harvard, Vancouver, ISO, and other styles
14

Abu-Sehly, A. A., M. Rashad, M. M. Hafiz, A. A. l. Abd-Elmageed, and R. Amin. "Tuning optical properties of thin films based on selenium tellurium." Optical Materials 109 (November 2020): 110291. http://dx.doi.org/10.1016/j.optmat.2020.110291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Chen, Xin-lian, Wei-xiao Ji, Chang-wen Zhang, and Pei-ji Wang. "Novel optical properties of MoS2 on monolayer zinc tellurium substrate." Journal of Materials Science 51, no. 9 (2016): 4580–87. http://dx.doi.org/10.1007/s10853-016-9771-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kariper, İ. Afşin. "Optical properties and surface energy of tellurium oxide thin film." Journal of Optics 47, no. 4 (2018): 504–10. http://dx.doi.org/10.1007/s12596-018-0485-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Cascales, C., E. Antic-Fidancev, M. Lemaitre-Blaise, and P. Porcher. "Optical properties and crystal field calculations of europium tellurium oxide." Journal of Alloys and Compounds 180, no. 1-2 (1992): 111–16. http://dx.doi.org/10.1016/0925-8388(92)90369-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Хоркин, В. С. "Акустические и акустооптические свойства стекол Ge-=SUB=-a-=/SUB=-Se-=SUB=-b-=/SUB=-Te-=SUB=-c-=/SUB=- и Si-=SUB=-a-=/SUB=-Se-=SUB=-b-=/SUB=-Te-=SUB=-c-=/SUB=- в случае дифракции на продольных и сдвиговых акустических волнах". Оптика и спектроскопия 129, № 10 (2021): 1293. http://dx.doi.org/10.21883/os.2021.10.51496.2417-21.

Full text
Abstract:
We investigated acoustic and acousto-optic properties of glasses based on germanium, selenium, silicon and tellurium. The results of measurement are presented for two group of glasses including germanium, selenium and tellurium (GeSeTe) and silicon and tellurium (SiTe). The major characteristics of glasses such as the velocity of longitudinal and shear acoustic waves as well as the values of figure of merit are presented. The values of figure of merit are obtained by diffraction on longitudinal and shear acoustic waves at the wavelength of optical radiation λ = 3.39 µm. We also present the res
APA, Harvard, Vancouver, ISO, and other styles
19

GAN, Ping, Min GU, Qiang LI, and Xiao-Dong XIAN. "Third-order Non-linear Optical Properties of Tellurium-based Composite Films." Journal of Inorganic Materials 26, no. 3 (2011): 295–99. http://dx.doi.org/10.3724/sp.j.1077.2011.00295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Sudha, A., T. K. Maity, S. L. Sharma, and A. N. Gupta. "Gamma irradiation effect on the optical properties of tellurium dioxide films." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 461 (December 2019): 171–74. http://dx.doi.org/10.1016/j.nimb.2019.09.050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Han, Lili, Zixin Yang, Qi Yang, et al. "Visible nonlinear optical properties of tellurium and application as saturable absorber." Optics & Laser Technology 137 (May 2021): 106817. http://dx.doi.org/10.1016/j.optlastec.2020.106817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bilir, Gökhan, Mustafa Yüksek, Ahmet Karatay, and Ayhan Elmalı. "Nonlinear optical absorption properties of tellurium glasses containing different network modifiers." Journal of Optics 22, no. 7 (2020): 075501. http://dx.doi.org/10.1088/2040-8986/ab92b6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Geng, Lei, and Yunjian Wang. "Synthesis and Characterization of Ammonium Potassium Tellurium Polyoxomolybdate: (NH4)2K2TeMo6O22·2H2O with One-Dimensional Anionic Polymeric Chain [TeMo6O22]4−." Crystals 11, no. 4 (2021): 375. http://dx.doi.org/10.3390/cryst11040375.

Full text
Abstract:
A new tellurium polyoxomolybdate hydrate (NH4)2K2TeMo6O22·2H2O was synthesized via the hydrothermal reaction method at 190 °C. The compound crystallizes in a one-dimensional tellurium polymolybdate [TeMo6O22]4− chain structure. The anionic polymeric chain is composed of Mo6O22 hexamers bridged together through sharing four corner oxygen atoms on the electron lone-paired TeO4 group. The Mo6O22 hexamer cluster is assembled from six distorted MoO6 octahedra in an edge-sharing manner. The ammonium and potassium cations distribute around the [TeMo6O22]4− chains and separate them from each other and
APA, Harvard, Vancouver, ISO, and other styles
24

Endo, Hirohisa. "Structural and electronic properties of liquid tellurium." Journal of Non-Crystalline Solids 156-158 (May 1993): 667–74. http://dx.doi.org/10.1016/0022-3093(93)90043-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Alias, Fatasya Izreen Hanim, Rozilah Rajmi, Mohd Fauzi Maulud, and Zakiah Mohamed. "Structural, optical and dielectric properties of tellurium-based double perovskite Sr2Ni1−xZnxTeO6." RSC Advances 11, no. 50 (2021): 31631–40. http://dx.doi.org/10.1039/d1ra03662a.

Full text
Abstract:
In this paper, Sr2Ni1−xZnxTeO6 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) double perovskite compounds were synthesised by the conventional solid-state method, and the structural, optical and dielectric properties were investigated.
APA, Harvard, Vancouver, ISO, and other styles
26

Tripathi, Karunapati, Adam A. Bahishti, M. A. Majeed Khan, M. Husain, and M. Zulfequar. "Optical properties of selenium–tellurium nanostructured thin film grown by thermal evaporation." Physica B: Condensed Matter 404, no. 16 (2009): 2134–37. http://dx.doi.org/10.1016/j.physb.2009.03.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Dzhurkov, V., S. Fefelov, D. Arsova, D. Nesheva, and L. Kazakova. "Electrical conductivity and optical properties of tellurium-rich Ge-Sb-Te films." Journal of Physics: Conference Series 558 (December 3, 2014): 012046. http://dx.doi.org/10.1088/1742-6596/558/1/012046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wang, Yixiu, Shukai Yao, Peilin Liao, et al. "Strain‐Engineered Anisotropic Optical and Electrical Properties in 2D Chiral‐Chain Tellurium." Advanced Materials 32, no. 29 (2020): 2002342. http://dx.doi.org/10.1002/adma.202002342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Shaaban, M. H., and A. A. Ali. "Density, Electrical and Optical Properties of Yttrium-Containing Tellurium Bismuth Borate Glasses." Journal of Electronic Materials 43, no. 11 (2014): 4023–32. http://dx.doi.org/10.1007/s11664-014-3331-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ran, Sijia, Tom S. Glen, Bei Li, Tianye Zheng, In-Suk Choi, and Steven T. Boles. "Mechanical Properties and Piezoresistivity of Tellurium Nanowires." Journal of Physical Chemistry C 123, no. 36 (2019): 22578–85. http://dx.doi.org/10.1021/acs.jpcc.9b05597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Sedakova, T. V., A. G. Mirochnik, and V. E. Karasev. "Structure and luminescence properties of tellurium(IV) complex compounds." Optics and Spectroscopy 110, no. 5 (2011): 755–61. http://dx.doi.org/10.1134/s0030400x11030192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Hussain, L. A., O. Akinlade, and C. C. Uhuegbu. "Local ordering and thermodynamic properties of bismuth-tellurium alloy." physica status solidi (b) 195, no. 2 (1996): 353–60. http://dx.doi.org/10.1002/pssb.2221950203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Bahishti, Adam A., M. A. Majeed Khan, B. S. Patel, F. S. Al-Hazmi, and M. Zulfequar. "Effect of laser irradiation on thermal and optical properties of selenium–tellurium alloy." Journal of Non-Crystalline Solids 355, no. 45-47 (2009): 2314–17. http://dx.doi.org/10.1016/j.jnoncrysol.2009.07.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Dakhel, A. A. "Effect of tellurium doping on the structural, optical, and electrical properties of CdO." Solar Energy 84, no. 8 (2010): 1433–38. http://dx.doi.org/10.1016/j.solener.2010.05.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Roodenko, K., P. K. Liao, D. Lan, et al. "Correlating optical infrared and electronic properties of low tellurium doped GaSb bulk crystals." Journal of Applied Physics 119, no. 13 (2016): 135701. http://dx.doi.org/10.1063/1.4944807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

MA, Yu-tian, Zhu-Qing GONG, Wei-Hong XU, and Jian HUANG. "Structural and optical properties of tellurium films obtained by chemical vapor deposition(CVD)." Transactions of Nonferrous Metals Society of China 16, no. 3 (2006): 693–99. http://dx.doi.org/10.1016/s1003-6326(06)60123-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Diaz-Reyes, J., J. A. Cardona-Bedoya, M. L. Gomez-Herrera, J. L. Herrera-Perez, I. Riech, and J. G. Mendoza-Alvarez. "Optical properties of tellurium-doped InxGa1 xAsySb1 yepitaxial layers studied by photoluminescence spectroscopy." Journal of Physics: Condensed Matter 15, no. 50 (2003): 8941–48. http://dx.doi.org/10.1088/0953-8984/15/50/023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Wang, Wei, Genqiang Zhang, and Xiaoguang Li. "Spontaneous Multiple Heterostructure Formation in Cadmium–Tellurium Nanowire Arrays and Its Optical Properties." Chemistry Letters 37, no. 8 (2008): 848–49. http://dx.doi.org/10.1246/cl.2008.848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Gutiérrez-Lazos, Claudio Davet, Mauricio Ortega-López, Manuel A. Pérez-Guzmán, et al. "Optical and structural characterization of oleic acid-stabilized CdTe nanocrystals for solution thin film processing." Beilstein Journal of Nanotechnology 5 (June 20, 2014): 881–86. http://dx.doi.org/10.3762/bjnano.5.100.

Full text
Abstract:
This work presents results of the optical and structural characterization of oleic acid-stabilized cadmium telluride nanocrystals (CdTe-NC) synthesized by an organometallic route. After being cleaned, the CdTe-NC were dispersed in toluene to obtain an ink-like dispersion, which was drop-cast on glass substrate to deposit a thin film. The CdTe-NC colloidal dispersion as well as the CdTe drop-cast thin films were characterized with regard to the optical and structural properties. TEM analysis indicates that the CdTe-NC have a nearly spherical shape (3.5 nm as mean size). Electron diffraction and
APA, Harvard, Vancouver, ISO, and other styles
40

Stjnandana, C. S., and K. S. Rao. "ESR and other properties of copper-substituted tellurium vanadate glasses." physica status solidi (a) 90, no. 2 (1985): 681–90. http://dx.doi.org/10.1002/pssa.2210900234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Sadhu, Sai Pavan Prashanth, Tukaram Shet, B. K. Abhijit, et al. "Linear and nonlinear optical properties of Tellurium Vanadate (Te 2 V 2 O 9 )." Optical Materials 69 (July 2017): 128–33. http://dx.doi.org/10.1016/j.optmat.2017.04.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Albert, D. "Optical properties and defect characterization of ZnSe laser diodes grown on tellurium-terminated GaAs." Journal of Crystal Growth 184-185, no. 1-2 (1998): 571–74. http://dx.doi.org/10.1016/s0022-0248(97)00739-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Albert, D., B. Olszowi, W. Spahn, et al. "Optical properties and defect characterization of ZnSe laser diodes grown on tellurium-terminated GaAs." Journal of Crystal Growth 184-185 (February 1998): 571–74. http://dx.doi.org/10.1016/s0022-0248(98)80119-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Al-Kuhaili, M. F., S. M. A. Durrani, E. E. Khawaja, and J. Shirokoff. "Effects of preparation conditions on the optical properties of thin films of tellurium oxide." Journal of Physics D: Applied Physics 35, no. 9 (2002): 910–15. http://dx.doi.org/10.1088/0022-3727/35/9/312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Maity, T. K., and S. L. Sharma. "Effect of gamma radiation on optical and electrical properties of tellurium dioxide thin films." Bulletin of Materials Science 31, no. 6 (2008): 841–46. http://dx.doi.org/10.1007/s12034-008-0134-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Hassan, M. A., and C. A. Hogarth. "A study of the structural, electrical and optical properties of copper tellurium oxide glasses." Journal of Materials Science 23, no. 7 (1988): 2500–2504. http://dx.doi.org/10.1007/bf01111908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Echendu, O. K., K. B. Okeoma, C. I. Oriaku, and I. M. Dharmadasa. "Electrochemical Deposition of CdTe Semiconductor Thin Films for Solar Cell Application Using Two-Electrode and Three-Electrode Configurations: A Comparative Study." Advances in Materials Science and Engineering 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/3581725.

Full text
Abstract:
Thin films of CdTe semiconductor were electrochemically deposited using two-electrode and three-electrode configurations in potentiostatic mode for comparison. Cadmium sulphate and tellurium dioxide were used as cadmium and tellurium sources, respectively. The layers obtained using both configurations exhibit similar structural, optical, and electrical properties with no specific dependence on any particular electrode configuration used. These results indicate that electrochemical deposition (electrodeposition) of CdTe and semiconductors in general can equally be carried out using two-electrod
APA, Harvard, Vancouver, ISO, and other styles
48

Khorkin, V. S., V. B. Voloshinov, A. I. Efimova, and L. A. Kulakova. "Acousto-Optic Properties of Germanium-, Selenium-, Silicon-, and Tellurium-Based Alloys." Optics and Spectroscopy 128, no. 2 (2020): 244–49. http://dx.doi.org/10.1134/s0030400x20020101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Liu, Aili, Xinnan Mao, Zhoumin Xiao, et al. "One-pot synthesis of dumbbell shaped PbS–Te hybrids with promising photothermal properties." Canadian Journal of Chemistry 98, no. 12 (2020): 799–805. http://dx.doi.org/10.1139/cjc-2020-0007.

Full text
Abstract:
The development of multi-component photothermal agents has attracted increasing attention due to their potential applications in energy conversion, medical treatments, etc. Herein, a dumbbell shaped PbS–Te heterostructure was prepared via a one-pot microwave-assisted decomposition of lead dimethyl dithiocarbamate and tellurium diethyl dithiocarbamate. The as-obtained PbS–Te hybrids exhibit excellent photothermal stability and strong optical absorption over a broad wavelength range spanning from ultraviolet to near-infrared, where the photothermal conversion efficiency could reach as high as 12
APA, Harvard, Vancouver, ISO, and other styles
50

Yao, Zhengrong, Kun Tang, Zhonghua Xu, Jingrui Ma, and Shulin Gu. "Synthesis and properties of tellurium-nitrogen co-doped ZnO micro-/nano-rods." Optical Materials Express 9, no. 2 (2019): 652. http://dx.doi.org/10.1364/ome.9.000652.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!