Academic literature on the topic 'Température de transition vitreuse'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Température de transition vitreuse.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Température de transition vitreuse"
Bondeau, A., and J. Huck. "Etude de la viscosité de cisaillement des liquides sous-refroidis jusqu'à leur température de transition vitreuse. Analyse des variations thermiques des coefficients de Vogel-Fulcher. - I. Carbonate de propylène." Journal de Physique 46, no. 10 (1985): 1717–30. http://dx.doi.org/10.1051/jphys:0198500460100171700.
Full textSalez, Thomas, and Élie Raphaël. "La transition vitreuse aux interfaces." Reflets de la physique, no. 46 (October 2015): 24–27. http://dx.doi.org/10.1051/refdp/201546024.
Full textFaivre, Annelise. "Les verres et la transition vitreuse." Matériaux & Techniques 103, no. 4 (2015): 404. http://dx.doi.org/10.1051/mattech/2015035.
Full textPerez, J., JY Cavaille, and J. Tatibouet. "La transition vitreuse dans les polymères amorphes." Journal de Chimie Physique 87 (1990): 1923–67. http://dx.doi.org/10.1051/jcp/1990871923.
Full textBrunswic, Léa, Frédéric Angeli, Patricia Hee, Peggy Georges, and Stéphane Gin. "Altération des verres industriels en milieux aqueux et atmosphérique : mécanismes, cinétiques, caractérisations." Matériaux & Techniques 110, no. 4 (2022): 402. http://dx.doi.org/10.1051/mattech/2022024.
Full textHuck, J., and A. Nakheli. "Viscosité, transition vitreuse et distance intermoléculaire des systèmes propanediol 1,2 - propanetriol." Journal de Physique I 5, no. 12 (December 1995): 1635–66. http://dx.doi.org/10.1051/jp1:1995221.
Full textPerez, J. "Frottement intérieur et module dynamique associés à la transition vitreuse des polymères amorphes." Revue de Physique Appliquée 21, no. 2 (1986): 93–107. http://dx.doi.org/10.1051/rphysap:0198600210209300.
Full textDonnadieu, Par P., O. Jaoul, and M. Kléman. "Plasticité de la silice amorphe de part et ďautre de la transition vitreuse." Philosophical Magazine A 52, no. 1 (July 1985): 5–17. http://dx.doi.org/10.1080/01418618508237601.
Full textGenin, N., and F. René. "Analyse du rôle de la transition vitreuse dans les procédés de conservation agro-alimentaires." Journal of Food Engineering 26, no. 4 (January 1995): 391–408. http://dx.doi.org/10.1016/0260-8774(94)00059-i.
Full textCormier, Laurent, and Daniel R. Neuville. "Les verres, quel désordre ?" Reflets de la physique, no. 74 (December 2022): 22–27. http://dx.doi.org/10.1051/refdp/202274022.
Full textDissertations / Theses on the topic "Température de transition vitreuse"
Jarrousse, Gauthier. "Adhésion des polymères semi-cristallins entre leur température de transition vitreuse et leur température de fusion." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2004. http://pastel.archives-ouvertes.fr/pastel-00001099.
Full textSekkat, Anas. "Comportement micromécanique de systèmes vitreux de nature différente autour de la température de transition vitreuse : approche expérimentale et modélisation." Lyon, INSA, 1992. http://www.theses.fr/1992ISAL0092.
Full textA real understanding of the rheological properties of vitreous systems and their evolution with temperature requires, as much as possible, a very precise knowledge of their structure. With this purpose, an experimental study has been carried out on a set of vitreous systems through their glass transition temperature in order to better understand the effect of the structure (kind and directivity of bonds) An original spectrometric method have led to experiments in the frequency range from 10-5 to 5Hz and in the temperature domain from 100K to 1500K. Concurrently, a physical analysis is also original and is based on new concepts developed in our laboratory. These concepts enable the description of the viscoelastic behaviour in a large domain of time and temperature, with experimentally accessible parameters, which physical meaning is clearly defined. Thus, above the glass transition Tg, in the liquid state, the characteristic time defining the molecular mobility either can be very dependent on the temperature or can vary slowly with temperature. The type of behaviour depends the content of glass modifiers or on chemical nature of bonds, i. E. The nature of forces assuming the cohesion of the glass former
Corniglion, Isabelle. "Synthèse et propriétés de revêtements polyuréthane pour film polyester." Lyon, INSA, 1991. http://www.theses.fr/1991ISAL0049.
Full textThe purpose of this work is to synthesize a polyurethane coating for polyester film to facilitate their processing. The polyurethanes (PU)are chemically cross linked and contain a small amount of siloxane additives which are expected to give sliding properties to the products. Initially, the PU is synthesized without siloxane and the bulk properties, glass transition temperature and dynamic mechanical properties, are studied. The products were found to be homogeneous. The surface properties are characterized by measuring the surface tension and the friction factor. These two parameters are studied as a function of the chemical composition and the bulk properties of the PU. The modification of the surface properties is obtained by the incorporation of siloxane additives in the form of a copolymer. These additives are covalently bound to the network. We studied the influence of the chemical structure comparing the results obtained with a polydimethylsiloxane, PDMS, and a polyphenylmethylsiloxane, PPMS. The influence of the PDMS chain length and the PDMS chain mobility is studied. The measure of the atomic compositions at the surface and of the contact angles between the polymer and water, indicate a siloxane surface enrichment with siloxane concentrations as low as 0. 5% by weight. We found that the friction factors are connected to the bulk and surface properties, and the morphology of the polymers
Jorat, Luc. "Propriétés électriques et diélectriques des liquides organiques refroidis jusqu'à leur température de transition vitreuse." Saint-Etienne, 1987. http://www.theses.fr/1987STET4015.
Full textDasriaux, Marion. "Evolutions microstructurales du PEEK au-dessus de sa température de transition vitreuse lors de maintiens sous pression et température." Phd thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2012. http://tel.archives-ouvertes.fr/tel-00786016.
Full textCamelio, Philippe. "Corrélation structure-propriétés : le modèle EVM prédiction de la température de transition vitreuse de polymères amorphes." Aix-Marseille 3, 1997. http://www.theses.fr/1997AIX30109.
Full textNakheli, Abdelrhani. "Surfusion, cristallisation et vitrification des systèmes eau - propanediol 1, 2 à basse température." Lyon 1, 1992. http://www.theses.fr/1992LYO10279.
Full textJabrane, Saïd. "Influence de la composition, de la température et du temps sur la fonction enthalpique du verre." Lyon, INSA, 1996. http://www.theses.fr/1996ISAL0011.
Full textThe enthalpic representation of glass using pressure and temperature only is not very satisfactory since it leads to contradictions like the Kauzmann paradox. The question raised therefore is that of the thermodynamic variables necessary to properly characterize the glassy state. To answer this question, we studied in a first stage the variations of the glass transition temperature Tg of propanediol 1. 2 and glycerol as a function of heating and cooling rates using DSC. The results showed that the glass transition is reversible in equilibrium conditions (zero heating and cooling rates). Then, the study of the influence of thermal annealing on the enthalpy of the glycerol glass was carried out. The DSC study revealed an enthalpic effect (exothermic) during annealing. This effect was attributed to a physico-chemical transformation involving molecular associations. Therefore, the thermodynamic properties of glass are a function, not only of temperature and pressure, but also of the extent of transformation of the latter transformation. On this view, the fictive temperature, largely used in literature, is the expression in terms of temperature of the extent of transformation. The thermodynamic origin of glass was further emphasized in the study of the variations of Tg with composition in two out of equilibrium phase diagrams (glycerol-propanediol 1. 2 and glycerol-water). Finally, the construction of the out of equilibrium phase diagram composed of the two propanediol 1. 2 enantiomers suggested that liquids (such as propanediol 1. 2) for which crystallization is impossible or very difficult are very likely mixtures of several molecular forms. The reason why they do not crystallize is therefore structural and not kinetic
Roynard, Denis. "Étude des propriétés viscoélastiques de quelques liquides moléculaires en fonction de la pression et de la température : application à la lubrification." Nice, 1990. http://www.theses.fr/1990NICE4447.
Full textKhalloufi, Seddik. "La température de transition vitreuse, une nouvelle approche pour prédire et optimiser la qualité des produits lyophilisés." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ66319.pdf.
Full textBooks on the topic "Température de transition vitreuse"
Ecole d'été de physique théorique (Les Houches, Haute-Savoie, France) (51st 1989). Liquides, cristallisation et transition vitreuse =: Liquids, freezing and glass transition : Les Houches, session LI, 3-28 juillet 1989. Amsterdam: North Holland, 1991.
Find full text(Editor), Andrea J. Liu, and Sidney R. Nagel (Editor), eds. Jamming and Rheology: Constrained Dynamics on Microscopic and Macroscopic Scales. CRC, 2001.
Find full textBook chapters on the topic "Température de transition vitreuse"
Etienne, Serge, and Laurent David. "Chapter 4. La transition vitreuse." In Introduction à la physique des polymères, 87–126. Dunod, 2012. http://dx.doi.org/10.3917/dunod.etien.2012.01.0087.
Full text"A.2. La relaxation structurale et la transition vitreuse." In Le verre, 319–46. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0248-7-050.
Full text"A.2. La relaxation structurale et la transition vitreuse." In Le verre, 319–46. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0248-7.c050.
Full textReports on the topic "Température de transition vitreuse"
Thees, Oliver, Matthias Erni, Vanessa Burg, Gillianne Bowman, Serge Biollaz, Theodoros Damartzis, Timothy Griffin, et al. Le bois-énergie en Suisse: potentiel énergétique, développement technologique, mobilisation des ressources et rôle dans la transition énergétique. Livre blanc. Swiss Federal Institute for Forest, Snow and Landscape Research, WSL, April 2023. http://dx.doi.org/10.55419/wsl:32793.
Full text