Journal articles on the topic 'Temperature drift'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Temperature drift.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kolbas, Yu Yu, and M. A. Ivanov. "Improved Algorithm for Mathematical Correction of the Zero Drift of the Zeeman Laser Gyro with Switching Longitudinal Mode of Generation." Herald of the Bauman Moscow State Technical University. Series Instrument Engineering, no. 2 (125) (April 2019): 91–103. http://dx.doi.org/10.18698/0236-3933-2019-2-91-103.
Full textDutz, Franz J., Andreas Heinrich, Rolf Bank, Alexander W. Koch, and Johannes Roths. "Fiber-Optic Multipoint Sensor System with Low Drift for the Long-Term Monitoring of High-Temperature Distributions in Chemical Reactors." Sensors 19, no. 24 (2019): 5476. http://dx.doi.org/10.3390/s19245476.
Full textNimura, Kohhei, and Marcin Adamczyk. "Methodology for Designing an Optimal Test Stand for Camera Thermal Drift Measurements and Its Stability Verification." Sensors 22, no. 24 (2022): 9997. http://dx.doi.org/10.3390/s22249997.
Full textWang, Peng, YaBing Liu, Donglin Wang, Huan Liu, Weiguo Liu, and HuiKai Xie. "Stability Study of an Electrothermally-Actuated MEMS Mirror with Al/SiO2 Bimorphs." Micromachines 10, no. 10 (2019): 693. http://dx.doi.org/10.3390/mi10100693.
Full textMartínez, Javier, David Asiain, and José Ramón Beltrán. "Lightweight Thermal Compensation Technique for MEMS Capacitive Accelerometer Oriented to Quasi-Static Measurements." Sensors 21, no. 9 (2021): 3117. http://dx.doi.org/10.3390/s21093117.
Full textTazifor, Martial, Egon Zimmermann, Johan Alexander Huisman, Markus Dick, Achim Mester, and Stefan Van Waasen. "Model-Based Correction of Temperature-Dependent Measurement Errors in Frequency Domain Electromagnetic Induction (FDEMI) Systems." Sensors 22, no. 10 (2022): 3882. http://dx.doi.org/10.3390/s22103882.
Full textLiu, Chong, Hai Zhang, Da Zhi Wang, et al. "Temperature Drifts Compensation of Strain-Temperature Method for the Measurement of Continuous Welded Rail Temperature Force." Applied Mechanics and Materials 541-542 (March 2014): 1370–75. http://dx.doi.org/10.4028/www.scientific.net/amm.541-542.1370.
Full textCai, Wenju, and Hal B. Gordon. "Southern High-Latitude Ocean Climate Drift in a Coupled Model." Journal of Climate 12, no. 1 (1999): 132–46. http://dx.doi.org/10.1175/1520-0442-12.1.132.
Full textSosunov, Aleksei, Roman Ponomarev, Anton Zhuravlev, Sergey Mushinsky, and Mariana Kuneva. "Reduction in DC-Drift in LiNbO3-Based Electro-Optical Modulator." Photonics 8, no. 12 (2021): 571. http://dx.doi.org/10.3390/photonics8120571.
Full textTazifor Tchantcho, Martial, Egon Zimmermann, Johan Alexander Huisman, Markus Dick, Achim Mester, and Stefan van Waasen. "Low-Pass Filters for a Temperature Drift Correction Method for Electromagnetic Induction Systems." Sensors 23, no. 17 (2023): 7322. http://dx.doi.org/10.3390/s23177322.
Full textXiao, Tao, Ming Hua Pan, and Guo Li Zhu. "Temperature Drift Modeling and Compensating of Fiber Optic Gyroscope." Applied Mechanics and Materials 220-223 (November 2012): 1911–16. http://dx.doi.org/10.4028/www.scientific.net/amm.220-223.1911.
Full textMbacke, Serigne Modou Die, Mohammed El Gibari, Benjamin Lauzier, Chantal Gautier, and Hongwu Li. "Implantable Blood Pressure Sensors with Analogic Thermal Drift Compensation." Engineering Proceedings 6, no. 1 (2021): 34. http://dx.doi.org/10.3390/i3s2021dresden-10126.
Full textDedyulin, Sergey, Elena Timakova, Dan Grobnic, Cyril Hnatovsky, Andrew D. W. Todd, and Stephen J. Mihailov. "Accurate Measurements of a Wavelength Drift in High-Temperature Silica-Fiber Bragg Gratings." Metrology 1, no. 1 (2021): 1–16. http://dx.doi.org/10.3390/metrology1010001.
Full textChanana, Ravi Kumar. "Variation of Saturated Drift Velocity of Electrons in Silicon with Temperature." Journal of Research in Engineering and Computer Sciences 2, no. 4 (2024): 38–40. https://doi.org/10.63002/jrecs.24.596.
Full textShiau, Jaw Kuen, Der Ming Ma, Chen Xuan Huang, and Ming Yu Chang. "MEMS Gyroscope Null Drift and Compensation Based on Neural Network." Advanced Materials Research 255-260 (May 2011): 2077–81. http://dx.doi.org/10.4028/www.scientific.net/amr.255-260.2077.
Full textWang, Shengqi, Zhou Shi, Xiangguang Han, Libo Zhao, and Jiuhong Wang. "Low-temperature drift and high-accuracy MEMS pressure sensor with inverted package structure." Journal of Physics: Conference Series 2963, no. 1 (2025): 012025. https://doi.org/10.1088/1742-6596/2963/1/012025.
Full textAbt, I., C. Gooch, F. Hagemann, et al. "Temperature dependence of the electron-drift anisotropy and implications for the electron-drift model." Journal of Instrumentation 18, no. 10 (2023): P10030. http://dx.doi.org/10.1088/1748-0221/18/10/p10030.
Full textYuan, Bo, Zhifeng Tang, Pengfei Zhang, and Fuzai Lv. "Thermal Calibration of Triaxial Accelerometer for Tilt Measurement." Sensors 23, no. 4 (2023): 2105. http://dx.doi.org/10.3390/s23042105.
Full textLi, Xue Fei, Deng Hua Li, Jing Min Gao, and Mei Sa Pang. "Temperature Drift Compensation Algorithm Based on BP and GA in Quartzes Flexible Accelerometer." Applied Mechanics and Materials 249-250 (December 2012): 95–99. http://dx.doi.org/10.4028/www.scientific.net/amm.249-250.95.
Full textRose, Shane. "High Temperature CMOS Reliability and Drift." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2010, HITEC (2010): 000040–46. http://dx.doi.org/10.4071/hitec-srose-ta21.
Full textGrobnic, Dan, Cyril Hnatovsky, Sergey Dedyulin, Robert B. Walker, Huimin Ding, and Stephen J. Mihailov. "Fiber Bragg Grating Wavelength Drift in Long-Term High Temperature Annealing." Sensors 21, no. 4 (2021): 1454. http://dx.doi.org/10.3390/s21041454.
Full textHeeley, Andrew D., Matthew J. Hobbs, and Jon R. Willmott. "Zero Drift Infrared Radiation Thermometer Using Chopper Stabilised Pre-Amplifier." Applied Sciences 10, no. 14 (2020): 4843. http://dx.doi.org/10.3390/app10144843.
Full textKuai, Tao, Qingfa Du, Jiafei Hu, et al. "Temperature Compensation Method for Tunnel Magnetoresistance Micro-Magnetic Sensors Through Reference Magnetic Field." Micromachines 15, no. 10 (2024): 1271. http://dx.doi.org/10.3390/mi15101271.
Full textZenteno-Hernández, José Alex, Adolfo Comerón, Federico Dios, et al. "On the temperature stability requirements of free-running Nd:YAG lasers for atmospheric temperature profiling through the rotational Raman technique." Atmospheric Measurement Techniques 17, no. 15 (2024): 4687–94. http://dx.doi.org/10.5194/amt-17-4687-2024.
Full textNavaneeth, Kodunthirapully N., Ramasamy Venkatesan, Mathew V. Martin, Chaniyil Anoopa Prasad, Krishnamoorthy Ramesh, and Karakunnel Jossia Joseph. "A Method for Drift Correction in Temperature and Salinity Measurements From Moored Buoys." Marine Technology Society Journal 55, no. 5 (2021): 170–78. http://dx.doi.org/10.4031/mtsj.55.5.12.
Full textHe, Ping, YunKai Ma, and Hui Chen. "Temperature Drift Compensation of Eddy Current Sensor under High Temperature Environment." E3S Web of Conferences 38 (2018): 04005. http://dx.doi.org/10.1051/e3sconf/20183804005.
Full textMayer, Thomas, Ralf Petrich, and Helko Borsdorf. "The Ion Formation and Quantitative Response of Isoprene, Monoterpenes and Terpenoids in Ion Mobility Spectrometry with Atmospheric-Pressure Chemical Ionization as a Function of Temperature." Sensors 24, no. 24 (2024): 7976. https://doi.org/10.3390/s24247976.
Full textSosunov, Alexey V., Roman S. Ponomarev, Anton A. Zhuravlev, Sergey S. Mushinsky, and Mariana Kuneva. "Reduction of drift of operating point in lithium niobate-based integrated-optical circuit." ВЕСТНИК ПЕРМСКОГО УНИВЕРСИТЕТА. ФИЗИКА, no. 2 (2021): 5–13. http://dx.doi.org/10.17072/1994-3598-2021-2-05-13.
Full textKrylov, A. A., and P. S. Kuznetsov. "MEMS gyroscope zero drift elimination at different temperature dynamics." Journal of «Almaz – Antey» Air and Space Defence Corporation, no. 2 (June 30, 2019): 34–39. http://dx.doi.org/10.38013/2542-0542-2019-2-34-39.
Full textDolgolenko, A. P. "Diffuse and drift movement of electrons in n-type silicon, irradiated by reactor fast neutrons." Nuclear Physics and Atomic Energy 12, no. 2 (2011): 167–72. https://doi.org/10.15407/jnpae2011.02.167.
Full textWang, Shunyue, and Fengtian Han. "Analysis and Compensation of Bias Drift for a Micromachined Spinning-Rotor Gyroscope with Electrostatic Suspension." Sensors 20, no. 6 (2020): 1799. http://dx.doi.org/10.3390/s20061799.
Full textGoodge, Berit H., Elisabeth Bianco, Noah Schnitzer, Henny W. Zandbergen, and Lena F. Kourkoutis. "Atomic-Resolution Cryo-STEM Across Continuously Variable Temperatures." Microscopy and Microanalysis 26, no. 3 (2020): 439–46. http://dx.doi.org/10.1017/s1431927620001427.
Full textKovacs, Zoltan, Dániel Szöllősi, John-Lewis Zinia Zaukuu, et al. "Factors Influencing the Long-Term Stability of Electronic Tongue and Application of Improved Drift Correction Methods." Biosensors 10, no. 7 (2020): 74. http://dx.doi.org/10.3390/bios10070074.
Full textZhou, Bin, Yang Gao, Yi He, and Wan Jing He. "Simulation and Analysis of the Temperature-Compensated FBAR." Applied Mechanics and Materials 719-720 (January 2015): 490–95. http://dx.doi.org/10.4028/www.scientific.net/amm.719-720.490.
Full textKATO, Hirohisa, and Mochimitsu KOMORI. "Temperature drift at low temperatures and development of bearingless motor." Journal of the Japan Society of Applied Electromagnetics and Mechanics 31, no. 3 (2023): 388–93. http://dx.doi.org/10.14243/jsaem.31.388.
Full textMalátek, Michal, Pavel Ripka, and Luděk Kraus. "Temperature offset drift of GMI sensors." Sensors and Actuators A: Physical 147, no. 2 (2008): 415–18. http://dx.doi.org/10.1016/j.sna.2008.05.016.
Full textXu, Pengfei, Zhenyu Wei, Lu Jia, et al. "ZRO Drift Reduction of MEMS Gyroscopes via Internal and Packaging Stress Release." Micromachines 12, no. 11 (2021): 1329. http://dx.doi.org/10.3390/mi12111329.
Full textLi, Shanglong, Wanjia Gao, and Wenyi Liu. "A Novel Temperature Drift Compensation Algorithm for Liquid-Level Measurement Systems." Micromachines 16, no. 1 (2024): 24. https://doi.org/10.3390/mi16010024.
Full textLi, Ying, Wei-Feng Sun, and Weichao Zhang. "Temperature Drift Characteristics Analysis of GMM-FBG Current Sensor Based on Finite-Element Multi-Physics Simulations." Applied Sciences 13, no. 19 (2023): 10955. http://dx.doi.org/10.3390/app131910955.
Full textMartínez, Javier, David Asiain, and José Ramón Beltrán. "Self-Calibration Technique with Lightweight Algorithm for Thermal Drift Compensation in MEMS Accelerometers." Micromachines 13, no. 4 (2022): 584. http://dx.doi.org/10.3390/mi13040584.
Full textJankowski, Mariusz, Piotr Zając, Piotr Amrozik, et al. "Thermal Performance of a Capacitive Comb-Drive MEMS Accelerometer: Measurements vs. Simulation." Energies 14, no. 22 (2021): 7462. http://dx.doi.org/10.3390/en14227462.
Full textLiang, Haoxun, Haimin Guo, Yongtuo Sun, Ao Li, Dudu Wang, and Yuqing Guo. "An Interpretation Method of Gas–Water Two-Phase Production Profile in High-Temperature and High-Pressure Vertical Wells Based on Drift-Flux Model." Processes 12, no. 12 (2024): 2891. https://doi.org/10.3390/pr12122891.
Full textMeng, Qinggang, Junbo Wang, Deyong Chen, Jian Chen, Bo Xie, and Yulan Lu. "An Ultra-low Thermal Sensitivity Drift Piezoresistive Pressure Sensor Compensated by Passive Resistor/Thermistor Network." Journal of Physics: Conference Series 2740, no. 1 (2024): 012042. http://dx.doi.org/10.1088/1742-6596/2740/1/012042.
Full textMeng, Wendong, Yurong Wang, Kai Tang, et al. "High-Precision Single-Photon Laser Time Transfer with Temperature Drift Post-Compensation." Sensors 20, no. 22 (2020): 6655. http://dx.doi.org/10.3390/s20226655.
Full textOkojie, R. S., D. Lukco, V. Nguyen, and E. Savrun. "Temperature Induced Voltage Offset Drifts in Silicon Carbide Pressure Sensors." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2012, HITEC (2012): 000099–103. http://dx.doi.org/10.4071/hitec-2012-tp16.
Full textCamerlenghi, Angelo, A. Crise, C. J. Pudsey, E. Accerboni, R. Laterza, and M. Rebesco. "Ten-month observation of the bottom current regime across a sediment drift of the Pacific margin of the Antarctic Peninsula." Antarctic Science 9, no. 4 (1997): 426–33. http://dx.doi.org/10.1017/s0954102097000552.
Full textLitvinov, V. S., A. A. Vlasov та D. V. Teytelbaum. "Software and hardware solution for stream processing of data for сompensation of temperature drifts of LWD orientation sensor «Looch»". Vestnik NSU. Series: Information Technologies 22, № 3 (2024): 40–48. https://doi.org/10.25205/1818-7900-2024-22-3-40-48.
Full textLuo, Xian Long, Tian Bai Xu, and Li Hong Bi. "Research on Compensation Method of Temperature Drift in Pressure Sensor Using Double Wheatstone-Bridge Method." Advanced Materials Research 459 (January 2012): 311–14. http://dx.doi.org/10.4028/www.scientific.net/amr.459.311.
Full textMa, Tianxiang, Yuting Han, Yongsen Xu, Pengzhang Dai, Honghai Shen, and Yunqing Liu. "Wide Temperature Range and Low Temperature Drift Eddy Current Displacement Sensor Using Digital Correlation Demodulation." Sensors 23, no. 10 (2023): 4895. http://dx.doi.org/10.3390/s23104895.
Full textCimatoribus, Andrea A., Hans van Haren, and Louis Gostiaux. "A Procedure to Compensate for the Response Drift of a Large Set of Thermistors." Journal of Atmospheric and Oceanic Technology 33, no. 7 (2016): 1495–508. http://dx.doi.org/10.1175/jtech-d-15-0243.1.
Full text