Journal articles on the topic 'Temperature-programmed reduction (TPR)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Temperature-programmed reduction (TPR).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Rynkowski, J. M. "Temperature-programmed reduction (TPR) of Co−Ni/Al2O3 catalysts." Reaction Kinetics and Catalysis Letters 30, no. 1 (March 1986): 33–39. http://dx.doi.org/10.1007/bf02068143.
Full textPirola, Carlo, Federico Galli, and Gregory S. Patience. "Experimental methods in chemical engineering: Temperature programmed reduction-TPR." Canadian Journal of Chemical Engineering 96, no. 11 (October 8, 2018): 2317–20. http://dx.doi.org/10.1002/cjce.23317.
Full textEbitani, Kohki, and Hideshi Hattori. "Combined Temperature-Programmed Reduction (TPR)- Temperature-Programmed Desorption (TPD) Study of Supported Platinum Catalysts." Bulletin of the Chemical Society of Japan 64, no. 8 (August 1991): 2422–27. http://dx.doi.org/10.1246/bcsj.64.2422.
Full textYan, Aiyu, Bin Liu, Baofeng Tu, Yonglai Dong, Mojie Cheng, Shuqin Song, and Panagiotis Tsiakaras. "A Temperature-Programmed-Reduction Study on La1−xSrxCrO3 and Surface-Ruthenium-Modified La1−xSrxCrO3." Journal of Fuel Cell Science and Technology 4, no. 1 (June 13, 2006): 79–83. http://dx.doi.org/10.1115/1.2393308.
Full textPortnyagin, Arseniy, Alexey Golikov, Evgenii K. Papynov, and Valentin Avramenko. "Rate Constant Approximation with Cubic Splines for Kinetic Analysis of Temperature-Programmed Reduction Data." Key Engineering Materials 806 (June 2019): 87–92. http://dx.doi.org/10.4028/www.scientific.net/kem.806.87.
Full textDancheva, Snejana, Liuba Ilieva, Nikolay Kotsev, and Atanas Andreev. "TPSR, TPR, and TPO Studies of Pd-V2O5/Al2O3 Catalysts in Complete Catalytic Oxidation of Benzene." Collection of Czechoslovak Chemical Communications 59, no. 9 (1994): 1922–30. http://dx.doi.org/10.1135/cccc19941922.
Full textHeidebrecht, Peter, Vladimir Galvita, and Kai Sundmacher. "An alternative method for parameter identification from temperature programmed reduction (TPR) data." Chemical Engineering Science 63, no. 19 (October 2008): 4776–88. http://dx.doi.org/10.1016/j.ces.2007.10.012.
Full textLatif, Mohd Nor, Alinda Samsuri, Mohamed Wahab Mohamed Hisham, and Mohd Ambar Yarmo. "Reduction of Molybdenum Trioxide by Using Hydrogen." Materials Science Forum 888 (March 2017): 404–8. http://dx.doi.org/10.4028/www.scientific.net/msf.888.404.
Full textJung, D. H., N. Umirov, T. Kim, Z. Bakenov, J. S. Kim, and S. S. Kim. "Thermal and Structural Stabilities of LixCoO2 cathode for Li Secondary Battery Studied by a Temperature Programmed Reduction." Eurasian Chemico-Technological Journal, no. 1 (February 20, 2019): 3. http://dx.doi.org/10.18321/ectj780.
Full textMa, Lingjuan, Dawei Han, Hongbin Ma, Longgang Liu, and Huichao Guo. "Characterization of Highly Dispersed Rod- and Particle-Shaped CuFe19Ox Catalysts and Their Shape Effects on WGS." Catalysts 8, no. 12 (December 7, 2018): 635. http://dx.doi.org/10.3390/catal8120635.
Full textLee, So Yeon, Yong Kul Lee, S. Ted Oyama, Seok Hee Lee, and Hee Chul Woo. "Preparation of Silica-Supported Nickel Molybdenum Phosphides by Temperature-Programmed Reduction Technique." Solid State Phenomena 124-126 (June 2007): 1765–68. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.1765.
Full textPerego, C. "Temperature Programmed Reduction (TPR) Characterization of NiO/YSZ For Solid Oxide Fuel Cell." ECS Proceedings Volumes 1993-4, no. 1 (January 1993): 454–63. http://dx.doi.org/10.1149/199304.0454pv.
Full textNagashima, Makoto, Daisuke Hirabayashi, and Kenzi Suzuki. "Oxygen Radicals Occlusion/Release Behavior of Nanoporous Aluminosilicate, Ca12Al14-XSiXO33+0.5X (0≦X≦4)." Advances in Science and Technology 45 (October 2006): 2105–9. http://dx.doi.org/10.4028/www.scientific.net/ast.45.2105.
Full textLiu, Liping, Xiaodong Wu, Yue Ma, Jinyi Wang, Rui Ran, Zhichun Si, and Duan Weng. "Tungsten Oxide Modified V2O5-Sb2O3/TiO2 Monolithic Catalyst: NH3-SCR Activity and Sulfur Resistance." Processes 10, no. 7 (July 8, 2022): 1333. http://dx.doi.org/10.3390/pr10071333.
Full textMatsumoto, Hiroshige, and Shuji Tanabe. "Formation of Reactive Clusters in Pd-Y Zeolite by Reduction-Reoxidation Treatment." Collection of Czechoslovak Chemical Communications 57, no. 4 (1992): 817–25. http://dx.doi.org/10.1135/cccc19920817.
Full textSalleh, Fairous, Tengku Shafazila Tengku Saharuddin, Alinda Samsuri, Rizafizah Othaman, Mohammad Wahab Mohammad Hisham, and Mohd Ambar Yarmo. "Influence of Cerium Additive on the Reduction Behaviour of Tungsten Oxide under Carbon Monoxide Atmosphere." Materials Science Forum 888 (March 2017): 389–93. http://dx.doi.org/10.4028/www.scientific.net/msf.888.389.
Full textYafarova, Liliya V., Grigory V. Mamontov, Irina V. Chislova, Oleg I. Silyukov, and Irina A. Zvereva. "The Effect of Transition Metal Substitution in the Perovskite-Type Oxides on the Physicochemical Properties and the Catalytic Performance in Diesel Soot Oxidation." Catalysts 11, no. 10 (October 19, 2021): 1256. http://dx.doi.org/10.3390/catal11101256.
Full textAchary, S. N., S. Varma, and A. K. Tyagi. "On reduction behavior of Al2(WO4)3: A combined powder XRD and temperature programmed reduction (TPR) studies." Journal of Physics and Chemistry of Solids 66, no. 7 (July 2005): 1200–1205. http://dx.doi.org/10.1016/j.jpcs.2005.03.003.
Full textLu, Long, Xueman Wang, Chunhua Hu, Ying Liu, Xiongbo Chen, Ping Fang, Dingsheng Chen, and Chaoping Cen. "Nanosized V-Ce Oxides Supported on TiO2 as a Superior Catalyst for the Selective Catalytic Reduction of NO." Catalysts 10, no. 2 (February 7, 2020): 202. http://dx.doi.org/10.3390/catal10020202.
Full textCheng, Feng, and Xiuwei Li. "Temperature-Programmed Reduction of NiO/Al2O3 by Biochar In Situ Generated from Citric Acid." Processes 10, no. 8 (August 5, 2022): 1542. http://dx.doi.org/10.3390/pr10081542.
Full textZabihi, Vahid, Mohammad Hasan Eikani, Mehdi Ardjmand, Seyed Mahdi Latifi, and Alireza Salehirad. "Selective catalytic reduction of NO by Co-Mn based nanocatalysts." International Journal of Chemical Reactor Engineering 19, no. 5 (April 22, 2021): 533–40. http://dx.doi.org/10.1515/ijcre-2020-0240.
Full textZhang, Yanbing, Zhe Xu, Xie Wang, Xiulian Lu, and Yuying Zheng. "Fabrication of Mn-FeOx/CNTs Catalysts for Low-Temperature NO Reduction with NH3." Nano 10, no. 04 (June 2015): 1550050. http://dx.doi.org/10.1142/s1793292015500502.
Full textDzakaria, Norliza, Maratun Najiha Abu Tahari, Salma Samidin, Tengku Shafazila Tengku Saharuddin, Fairous Salleh, Azizul Hakim Lahuri, and Mohd Ambar Yarmo. "Effect of Cobalt on Nickel Oxide Toward Reduction Behaviour in Hydrogen and Carbon Monoxide Atmosphere." Materials Science Forum 1010 (September 2020): 373–78. http://dx.doi.org/10.4028/www.scientific.net/msf.1010.373.
Full textLi, Xue, Rui Sheng Hu, Jia Nan Hu, and Ya Qin Bai. "Comparison Study on Support Effect of Co-Series Compound Oxide Catalysts Supported Rare Earth." Advanced Materials Research 356-360 (October 2011): 439–44. http://dx.doi.org/10.4028/www.scientific.net/amr.356-360.439.
Full textSalleh, Fairous, Alinda Samsuri, Tengku Shafazila Tengku Saharuddin, Rizafizah Othaman, Mohamed Wahab Mohamed Hisham, and Mohd Ambar Yarmo. "Temperature-Programmed and X-Ray Diffractometry Studies of WO3 Reduction by Carbon Monoxide." Advanced Materials Research 1087 (February 2015): 73–76. http://dx.doi.org/10.4028/www.scientific.net/amr.1087.73.
Full textPai, M. R., A. M. Banerjee, S. R. Bharadwaj, and S. K. Kulshreshtha. "Synthesis, characterization, thermal stability and redox behavior of In3+2Ti4+1–xTm3+xO5–δ, (Tm = Fe3+ and Cr3+, 0.0 ≤ x ≤ 0.2) mixed-oxide catalysts." Journal of Materials Research 22, no. 7 (July 2007): 1787–96. http://dx.doi.org/10.1557/jmr.2007.0240.
Full textLogan, A. D., and M. Shelef. "Oxygen availability in mixed cerium/praseodymium oxides and the effect of noble metals." Journal of Materials Research 9, no. 2 (February 1994): 468–75. http://dx.doi.org/10.1557/jmr.1994.0468.
Full textAfzal, M., F. Mahmood, and S. Karim. "A study of metals supported on active carbon with a temperature programmed reduction (TPR) technique." Journal of Thermal Analysis 41, no. 5 (May 1994): 1119–28. http://dx.doi.org/10.1007/bf02547201.
Full textTengku Saharuddin, Tengku Shafazila, Alinda Samsuri, Fairous Salleh, Rizafizah Othaman, Mohammad Kassim, Mohamed Wahab Mohamed Hisham, and Mohd Ambar Yarmo. "The Reduction Behaviour of Cerium Doped Iron Oxide in Hydrogen and Carbon Monoxide Atmosphere." Materials Science Forum 840 (January 2016): 381–85. http://dx.doi.org/10.4028/www.scientific.net/msf.840.381.
Full textLiu, Ye, Chonglin Song, Gang Lv, Chenyang Fan, and Xiaodong Li. "Promotional Effect of Cerium and/or Zirconium Doping on Cu/ZSM-5 Catalysts for Selective Catalytic Reduction of NO by NH3." Catalysts 8, no. 8 (July 28, 2018): 306. http://dx.doi.org/10.3390/catal8080306.
Full textBatubara, Shahad, Mogbel Alrushaid, Muhammad Amtiaz Nadeem, and Hicham Idriss. "Study of the Kinetics of Reduction of IrO2 on TiO2 (Anatase) by Temperature-Programmed Reduction." Inorganics 11, no. 2 (January 31, 2023): 66. http://dx.doi.org/10.3390/inorganics11020066.
Full textBulánek, Roman, and Pavel Čičmanec. "Kinetics of Reduction of Cu Ions in MFI Zeolite Investigated by H2-TPR Method." Collection of Czechoslovak Chemical Communications 73, no. 8-9 (2008): 1132–48. http://dx.doi.org/10.1135/cccc20081132.
Full textTengku, Shafazila, Alinda Samsuri, Fairous Salleh, Rizafizah Othaman, Mohammad bin Kassim, Mohamed Wahab Mohamed Hisham, and Mohd Ambar Yarmo. "Temperature Programmed Reduction and X-Ray Diffraction Studies of Fe2O3 Reduction by Different Concentration of Carbon Monoxide." Advanced Materials Research 1087 (February 2015): 55–58. http://dx.doi.org/10.4028/www.scientific.net/amr.1087.55.
Full textCenteno, M. A., J. J. Benítez, P. Malet, I. Carrizosa, and J. A. Odriozola. "In Situ Temperature-Programmed Diffuse Reflectance Infrared Fourier Transform Spectroscopy (TPDRIFTS) of V2O5/TiO2 Catalysts." Applied Spectroscopy 51, no. 3 (March 1997): 416–22. http://dx.doi.org/10.1366/0003702971940305.
Full textVirgilio, Emanuel Martín, Cristina Liliana Padró, and Maria Eugenia Sad. "BUTENEDIOLS PRODUCTION FROM ERYTHRITOL ON Rh PROMOTED CATALYST." Latin American Applied Research - An international journal 50, no. 2 (March 29, 2020): 89–94. http://dx.doi.org/10.52292/j.laar.2020.353.
Full textSamsuri, Alinda, Fairous Salleh, Tengku Shafazila Tengku Saharuddin, Rizafizah Othaman, Mohamed Wahab Mohamed Hisham, and Mohd Ambar Yarmo. "Effect of Noble Metal Silver on the Reduction Behaviour of Molybdenum Oxide Using Carbon Monoxide." Materials Science Forum 888 (March 2017): 377–81. http://dx.doi.org/10.4028/www.scientific.net/msf.888.377.
Full textSalleh, Fairous, Tengku Shafazila Tengku Saharuddin, Alinda Samsuri, Rizafizah Othaman, Mohamed Wahab Mohamed Hisham, and Mohd Ambar Yarmo. "Reduction Behaviour of WO3 to W under Carbon Monoxide Atmosphere." Materials Science Forum 840 (January 2016): 305–8. http://dx.doi.org/10.4028/www.scientific.net/msf.840.305.
Full textSamojeden, Bogdan, Marta Kamienowska, Armando Izquierdo Colorado, Maria Elena Galvez, Ilona Kolebuk, Monika Motak, and Patrick Da Costa. "Novel Nickel- and Magnesium-Modified Cenospheres as Catalysts for Dry Reforming of Methane at Moderate Temperatures." Catalysts 9, no. 12 (December 14, 2019): 1066. http://dx.doi.org/10.3390/catal9121066.
Full textAli, Sardar, Noor Asmawati Mohd Zabidi, and Duvvuri Subbarao. "Synthesis and Characterization of γ-Alumina-Supported Cobalt and Iron Nanocatalysts." Advanced Materials Research 545 (July 2012): 129–36. http://dx.doi.org/10.4028/www.scientific.net/amr.545.129.
Full textZhang, Haojian. "Au Nanoparticles Supported on Mn- or/and La-Doped CeO2 Nanorods for One-Step Oxidative Esterification of Methacrolein and Methanol to Methyl Methacrylate." Catalysts 13, no. 4 (April 18, 2023): 767. http://dx.doi.org/10.3390/catal13040767.
Full textYang, Wen, Yanyan Feng, and Wei Chu. "Promotion Effect of CaO Modification on Mesoporous Al2O3-Supported Ni Catalysts for CO2Methanation." International Journal of Chemical Engineering 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/2041821.
Full textMaina, Silvia Carolina Palmira, Irene María Julieta Vilella, Adriana Daniela Ballarini, and Sergio Rubén de Miguel. "Performance of Modified Alumina-Supported Ruthenium Catalysts in the Reforming of Methane with CO2." Catalysts 13, no. 2 (February 3, 2023): 338. http://dx.doi.org/10.3390/catal13020338.
Full textGorimbo, Joshua, Ralph Muvhiiwa, Ephraim Llane, and Diane Hildebrandt. "Cobalt Catalyst Reduction Thermodynamics in Fischer Tropsch: An Attainable Region Approach." Reactions 1, no. 2 (November 17, 2020): 115–29. http://dx.doi.org/10.3390/reactions1020010.
Full textUdomsap, Parncheewa, and Somsak Supasitmongkol. "Effect of Gallium Loading on Reducibility and Dispersion of Copper-Based Catalyst." Key Engineering Materials 659 (August 2015): 211–15. http://dx.doi.org/10.4028/www.scientific.net/kem.659.211.
Full textTang, Chih Wei, Jiunn Jer Hwang, Shie Hsiung Lin, and Chin Chun Chung. "Study of Preparation, Characterization and Temperature-Programmed Reduction of NiO-ZnO Binary Materials." Advanced Materials Research 664 (February 2013): 515–20. http://dx.doi.org/10.4028/www.scientific.net/amr.664.515.
Full textWang, Li, Junbo Wang, Heping Cheng, Xiangxiang Zhou, and Zhen Ma. "Ce1−xFexVO4 with Improved Activity for Catalytic Reduction of NO with NH3." Catalysts 12, no. 5 (May 17, 2022): 549. http://dx.doi.org/10.3390/catal12050549.
Full textTeodorescu, M., A. C. Banciu, I. Sitaru, and E. Segal. "Investigation concerning bimetallic catalysts using nonisothermal (temperature programmed reduction (TPR) and temperature programmed desorption (TPD)) and isothermal methods. Part 2. Nickel—chromium prereduced catalysts." Thermochimica Acta 240 (July 1994): 199–205. http://dx.doi.org/10.1016/0040-6031(94)87041-1.
Full textLi, Junhui, Norman Wilken, Krishna Kamasamudram, Neal W. Currier, Louise Olsson, and Aleksey Yezerets. "Characterization of Active Species in Cu-Beta Zeolite by Temperature-Programmed Reduction Mass Spectrometry (TPR-MS)." Topics in Catalysis 56, no. 1-8 (April 3, 2013): 201–4. http://dx.doi.org/10.1007/s11244-013-9952-1.
Full textMaes, I. I. "The study of coal-derived pyrite using atmospheric pressure temperature programmed reduction (AP-TPR) and TGA." Fuel and Energy Abstracts 37, no. 3 (May 1996): 171. http://dx.doi.org/10.1016/0140-6701(96)88345-7.
Full textGervasini, Antonella, and Simona Bennici. "Dispersion and surface states of copper catalysts by temperature-programmed-reduction of oxidized surfaces (s-TPR)." Applied Catalysis A: General 281, no. 1-2 (March 2005): 199–205. http://dx.doi.org/10.1016/j.apcata.2004.11.030.
Full text