Journal articles on the topic 'Temperature Programmed Surface Reaction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Temperature Programmed Surface Reaction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hunger, B., and J. Hoffmann. "Temperature-programmed surface reactions (TPSR) on heterogeneous surfaces." Journal of Thermal Analysis 40, no. 3 (1993): 1347–56. http://dx.doi.org/10.1007/bf02546899.
Full textHinrichsen, O., A. Hornung, and M. Muhler. "Modeling of Temperature-Programmed Surface Reactions." Chemical Engineering & Technology 22, no. 12 (1999): 1039–42. http://dx.doi.org/10.1002/(sici)1521-4125(199912)22:12<1039::aid-ceat1039>3.0.co;2-5.
Full textPaul, Anumita, Cynthia J. Jenks, and Brian E. Bent. "Site-blocking effects in temperature-programmed reaction studies of surface decomposition reactions." Surface Science 261, no. 1-3 (1992): 233–42. http://dx.doi.org/10.1016/0039-6028(92)90235-x.
Full textChang, Che‐Chen, Cheng Khong, and Richard Saiki. "Temperature‐programmed reaction of methylamine on the Ni{100} surface." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 11, no. 4 (1993): 2122–27. http://dx.doi.org/10.1116/1.578379.
Full textLIU, Bing, Hengyong XU, and Zehui ZHANG. "Temperature-Programmed Surface Reaction Study of Adsorption and Reaction of H2S on Ceria." Chinese Journal of Catalysis 33, no. 9-10 (2012): 1631–35. http://dx.doi.org/10.1016/s1872-2067(11)60416-6.
Full textJankowska, Aleksandra, Agata Chłopek, Andrzej Kowalczyk, et al. "Catalytic Performance of Spherical MCM-41 Modified with Copper and Iron as Catalysts of NH3-SCR Process." Molecules 25, no. 23 (2020): 5651. http://dx.doi.org/10.3390/molecules25235651.
Full textPei, Yanpeng, Yunjie Ding, Juan Zang, et al. "Temperature-programmed desorption and surface reaction studies of CO on Co2C." Chinese Journal of Catalysis 34, no. 8 (2013): 1570–75. http://dx.doi.org/10.1016/s1872-2067(12)60615-9.
Full textHa, Heung Yong, Taehoon Lim, Jong Shik Chung, and Sang Heup Moon. "TPSR(Temperature-Programmed Surface Reaction) study of sulfur-poisoned nickel catalyst." Korean Journal of Chemical Engineering 7, no. 2 (1990): 148–50. http://dx.doi.org/10.1007/bf02705061.
Full textDancheva, Snejana, Liuba Ilieva, Nikolay Kotsev, and Atanas Andreev. "TPSR, TPR, and TPO Studies of Pd-V2O5/Al2O3 Catalysts in Complete Catalytic Oxidation of Benzene." Collection of Czechoslovak Chemical Communications 59, no. 9 (1994): 1922–30. http://dx.doi.org/10.1135/cccc19941922.
Full textZhao, Zhao Hui, Han Bo Zou, and Wei Ming Lin. "Influence of Final Nitriding Temperature on the Preparation and the Catalytic Performance of CoMoNx/CNTs for Ammonia Decomposition." Advanced Materials Research 557-559 (July 2012): 1514–17. http://dx.doi.org/10.4028/www.scientific.net/amr.557-559.1514.
Full textParastaev, Alexander, Wilfred F. L. M. Hoeben, Bert E. J. M. van Heesch, Nikolay Kosinov, and Emiel J. M. Hensen. "Temperature-programmed plasma surface reaction: An approach to determine plasma-catalytic performance." Applied Catalysis B: Environmental 239 (December 2018): 168–77. http://dx.doi.org/10.1016/j.apcatb.2018.08.011.
Full textWang, Kuan-Wen, Shu-Ru Chung, Yu-Chen Wei, Jyh-Fu Lee, and Tsong P. Perng. "Temperature-programmed surface reaction (TPSR) of CH4 synthesis by PdxNi100−x nanoparticles." Applied Surface Science 255, no. 11 (2009): 5802–5. http://dx.doi.org/10.1016/j.apsusc.2009.01.008.
Full textBAI, X. "Temperature programmed surface reaction of methylcyclopentane on Pd/NaY and Pd/HY." Journal of Catalysis 132, no. 1 (1991): 266–68. http://dx.doi.org/10.1016/0021-9517(91)90264-5.
Full textPrasad, Jagdish, and John L. Gland. "Diimide formation on rhodium surfaces: a temperature-programmed reaction spectroscopy study." Journal of the American Chemical Society 113, no. 5 (1991): 1577–79. http://dx.doi.org/10.1021/ja00005a020.
Full textZi-Feng, Yan, Qian Ling, Liu Xin-Mei, et al. "Mechanistic Study of Methane Reforming with Carbon Dioxide on a Supported Nickel Catalyst." Journal of Chemical Research 2005, no. 6 (2005): 394–400. http://dx.doi.org/10.3184/0308234054506839.
Full textKarásková, Kateřina, Kateřina Pacultová, Květuše Jirátová, Dagmar Fridrichová, Martin Koštejn, and Lucie Obalová. "K-Modified Co–Mn–Al Mixed Oxide—Effect of Calcination Temperature on N2O Conversion in the Presence of H2O and NOx." Catalysts 10, no. 10 (2020): 1134. http://dx.doi.org/10.3390/catal10101134.
Full textWU, G., D. STACCHIOLA, M. COLLINS, and W. T. TYSOE. "THE ADSORPTION AND REACTION OF ACETALDEHYDE ON CLEAN Ag(111)." Surface Review and Letters 07, no. 03 (2000): 271–75. http://dx.doi.org/10.1142/s0218625x00000373.
Full textEllis, Gareth, James Sidaway, and Martin R. S. McCoustra. "Numerical simulation of temperature-programmed reaction data: an application in surface chemical kinetics." Journal of the Chemical Society, Faraday Transactions 94, no. 17 (1998): 2633–37. http://dx.doi.org/10.1039/a803766c.
Full textPrasad, Jagdish, and John L. Gland. "Hydrazine decomposition on a clean rhodium surface: A temperature programmed reaction spectroscopy study." Langmuir 7, no. 4 (1991): 722–26. http://dx.doi.org/10.1021/la00052a021.
Full textCenteno, M. A., J. J. Benítez, P. Malet, I. Carrizosa, and J. A. Odriozola. "In Situ Temperature-Programmed Diffuse Reflectance Infrared Fourier Transform Spectroscopy (TPDRIFTS) of V2O5/TiO2 Catalysts." Applied Spectroscopy 51, no. 3 (1997): 416–22. http://dx.doi.org/10.1366/0003702971940305.
Full textBray, J. M., I. J. Skavdahl, J. S. McEwen, and W. F. Schneider. "First-principles reaction site model for coverage-sensitive surface reactions: Pt(111)–O temperature programmed desorption." Surface Science 622 (April 2014): L1—L6. http://dx.doi.org/10.1016/j.susc.2013.12.005.
Full textChaabouni, Henda, Saoud Baouche, Stephan Diana, and Marco Minissale. "Reactivity of formic acid (HCOOH) with H atoms on cold surfaces of interstellar interest." Astronomy & Astrophysics 636 (April 2020): A4. http://dx.doi.org/10.1051/0004-6361/201936411.
Full textStuchlý, Vladimír, and Karel Klusáček. "Temperature-programmed hydrogenation of surface carbonaceous deposits on a Ni/SiO2 methanation catalyst." Collection of Czechoslovak Chemical Communications 55, no. 2 (1990): 354–63. http://dx.doi.org/10.1135/cccc19900354.
Full textAl-Doghachi, Faris A. Jassim, Diyar M. A. Murad, Huda S. Al-Niaeem, Salam H. H. Al-Jaberi, Surahim Mohamad, and Yun Hin Taufiq-Yap. "High Active Co/Mg1-xCex3+O Catalyst: Effects of Metal-Support Promoter Interactions on CO2 Reforming of CH4 Reaction." Bulletin of Chemical Reaction Engineering & Catalysis 16, no. 1 (2021): 97–110. http://dx.doi.org/10.9767/bcrec.16.1.9969.97-110.
Full textPokrovskiy, Valeriy A. "Temperature-Programmed Desorption Mass Spectrometry (TPDMS) of Dispersed Oxides." Adsorption Science & Technology 14, no. 5 (1996): 301–17. http://dx.doi.org/10.1177/026361749601400505.
Full textWang, Kai-Ting, Santhanamoorthi Nachimuthu, and Jyh-Chiang Jiang. "Temperature-programmed desorption studies of NH3 and H2O on the RuO2(110) surface: effects of adsorbate diffusion." Physical Chemistry Chemical Physics 20, no. 37 (2018): 24201–9. http://dx.doi.org/10.1039/c8cp02568a.
Full textBartram, Michael E., and J. Randall Creighton. "GaN CVD Reactions: Hydrogen and Ammonia Decomposition and the Desorption of Gallium." MRS Internet Journal of Nitride Semiconductor Research 4, S1 (1999): 369–74. http://dx.doi.org/10.1557/s109257830000274x.
Full textChaba, Nattaporn, Sutasinee Neramittagapong, and Arthit Neramittagapong. "Methanol Dehydration to Dimethyl Ether over Silica Derived from Rice Husk as the Component-Based Catalysts." Advanced Materials Research 931-932 (May 2014): 17–21. http://dx.doi.org/10.4028/www.scientific.net/amr.931-932.17.
Full textHunger, B., and J. Hoffmann. "Kinetic analysis of temperature-programmed surface reactions on porous catalysts." Journal of Thermal Analysis 38, no. 4 (1992): 739–48. http://dx.doi.org/10.1007/bf01979404.
Full textJayamurthy, M., and S. Vasudevan. "Methanol-to-gasoline(MTG)conversion over ZSM-5. A temperature programmed surface reaction study." Catalysis Letters 36, no. 1-2 (1996): 111–14. http://dx.doi.org/10.1007/bf00807214.
Full textChen, Lin, Qingyu Huang, Duchao Zhang, Weifeng Liu, and Tianzu Yang. "Temperature programmed surface reaction test of Co–Ni bimetallic aerogel catalysts for methane reforming." Reaction Kinetics, Mechanisms and Catalysis 126, no. 2 (2019): 951–62. http://dx.doi.org/10.1007/s11144-018-01531-3.
Full textDIAZ, A., L. GANDIA, J. ODRIOZOLA, and M. MONTES. "Thiophene hydrogenolysis using temperature-programmed surface reaction as a tool to study poison toxicity." Applied Catalysis A: General 132, no. 1 (1995): L1—L7. http://dx.doi.org/10.1016/0926-860x(95)00196-4.
Full textKocemba, Ireneusz, Justyna Nadajczyk, Jacek Góralski, and M. Szynkowska. "Photoreduction of carbon dioxide with hydrogen using temperature programmed method." Polish Journal of Chemical Technology 12, no. 3 (2010): 1–2. http://dx.doi.org/10.2478/v10026-010-0022-1.
Full textSakakini, B. H., and A. S. Verbrugge. "Temperature-programmed surface reaction as a means of characterizing supported-metal catalysts and probing their surface reactivity." Journal of the Chemical Society, Faraday Transactions 93, no. 8 (1997): 1637–40. http://dx.doi.org/10.1039/a607081g.
Full textMahapatra, Mausumi, and Wilfred T. Tysoe. "Adsorption and reaction pathways of a chiral probe molecule, S-glycidol on a Pd(111) surface." Catalysis Science & Technology 5, no. 2 (2015): 738–42. http://dx.doi.org/10.1039/c4cy00904e.
Full textKräuter, Jessica, Lars Mohrhusen, Tim Thiedemann, Michael Willms, and Katharina Al-Shamery. "Activation of Small Organic Molecules on Ti2+-Rich TiO2 Surfaces: Deoxygenation vs. C–C Coupling." Zeitschrift für Naturforschung A 74, no. 8 (2019): 697–707. http://dx.doi.org/10.1515/zna-2019-0135.
Full textZhang, Kai, Yuze Bai, Zhijun Gong, Zengwu Zhao, Baowei Li, and Wenfei Wu. "Surface Properties and Denitrification Performance of Impurity-Removed Rare Earth Concentrate." Materials 13, no. 3 (2020): 580. http://dx.doi.org/10.3390/ma13030580.
Full textMarsh, Anderson L., and John L. Gland. "Mechanisms of deep benzene oxidation on the Pt(111) surface using temperature-programmed reaction methods." Surface Science 536, no. 1-3 (2003): 145–54. http://dx.doi.org/10.1016/s0039-6028(03)00575-2.
Full textJayamurthy, M., and S. Vasudevan. "Temperature-Programmed Desorption and Surface Reaction of Thiophene over Co-Mo/.gamma.-Al2O3 hydrodesulfurization Catalysts." Journal of Physical Chemistry 98, no. 27 (1994): 6777–84. http://dx.doi.org/10.1021/j100078a020.
Full textJayamurthy, M., and S. Vasudevan. "Temperature Programmed Surface Reaction Studies of the Methanol to Gasoline (MTG) Conversion over ZSM-5." Berichte der Bunsengesellschaft für physikalische Chemie 99, no. 12 (1995): 1521–27. http://dx.doi.org/10.1002/bbpc.199500118.
Full textWang, Chong, Shenglin Liu, Qingxia Wang, and Longya Xu. "Study on the carburizing character of iron catalysts by Temperature Programmed Surface reaction of carburization." Reaction Kinetics and Catalysis Letters 88, no. 1 (2006): 73–79. http://dx.doi.org/10.1007/s11144-006-0112-5.
Full textKimber, Helen J., Courtney P. Ennis, and Stephen D. Price. "Single and double addition of oxygen atoms to propyne on surfaces at low temperatures." Faraday Discuss. 168 (2014): 167–84. http://dx.doi.org/10.1039/c3fd00130j.
Full textCharisiou, Nikolaos D., Georgios I. Siakavelas, Binlin Dou, et al. "Nickel Supported on AlCeO3 as a Highly Selective and Stable Catalyst for Hydrogen Production via the Glycerol Steam Reforming Reaction." Catalysts 9, no. 5 (2019): 411. http://dx.doi.org/10.3390/catal9050411.
Full textMinachev, Kh M., K. P. Kotyaev, G. I. Lin, and A. Y. Rozovskii. "Temperature-programmed surface reactions of methanol on commercial Cu-containing catalysts." Catalysis Letters 3, no. 4 (1989): 299–307. http://dx.doi.org/10.1007/bf00766067.
Full textBaek, Seo-Hyeon, Kyunghee Yun, Dong-Chang Kang, et al. "Characteristics of High Surface Area Molybdenum Nitride and Its Activity for the Catalytic Decomposition of Ammonia." Catalysts 11, no. 2 (2021): 192. http://dx.doi.org/10.3390/catal11020192.
Full textZabihi, Vahid, Mohammad Hasan Eikani, Mehdi Ardjmand, Seyed Mahdi Latifi, and Alireza Salehirad. "Selective catalytic reduction of NO by Co-Mn based nanocatalysts." International Journal of Chemical Reactor Engineering 19, no. 5 (2021): 533–40. http://dx.doi.org/10.1515/ijcre-2020-0240.
Full textZhou, Chen Liang, Quan Sheng Liu, Yang Li, et al. "Influence of Pyrolysis Temperature on the Gaseous Products of Lignite." Advanced Materials Research 524-527 (May 2012): 883–86. http://dx.doi.org/10.4028/www.scientific.net/amr.524-527.883.
Full textBorfecchia, Elisa, Chiara Negri, Kirill A. Lomachenko, Carlo Lamberti, Ton V. W. Janssens, and Gloria Berlier. "Temperature-dependent dynamics of NH3-derived Cu species in the Cu-CHA SCR catalyst." Reaction Chemistry & Engineering 4, no. 6 (2019): 1067–80. http://dx.doi.org/10.1039/c8re00322j.
Full textLee, So Yeon, Yong Kul Lee, S. Ted Oyama, Seok Hee Lee, and Hee Chul Woo. "Preparation of Silica-Supported Nickel Molybdenum Phosphides by Temperature-Programmed Reduction Technique." Solid State Phenomena 124-126 (June 2007): 1765–68. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.1765.
Full textYu, Lei, Min Song, Yuexing Wei та Jun Xiao. "Combining Carbon Fibers with Ni/γ–Al2O3 Used for Syngas Production: Part A: Preparation and Evaluation of Complex Carrier Catalysts". Catalysts 8, № 12 (2018): 658. http://dx.doi.org/10.3390/catal8120658.
Full text