Dissertations / Theses on the topic 'Temperature-Strain Rate'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Temperature-Strain Rate.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Fernandez, Lorences Jose O. "Crystallinity changes in PET and Nylon 11 with strain, strain rate and temperature." Thesis, Loughborough University, 1999. https://dspace.lboro.ac.uk/2134/32894.
Full textLarour, Patrick [Verfasser]. "Strain rate sensitivity of automotive sheet steels: influence of plastic strain, strain rate, temperature, microstructure, bake hardening and pre-strain / vorgelegt von Patrick Larour." Aachen : Shaker, 2010. http://d-nb.info/1007085649/34.
Full textTanner, Albert Buck. "Modeling temperature and strain rate history effects in OFHC CU." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/17143.
Full textAshton, Mark. "Behaviour of metals as a function of strain-rate and temperature." Thesis, Loughborough University, 1999. https://dspace.lboro.ac.uk/2134/10449.
Full textRoshanaei, Sina. "Stress-Strain data for metals in bar and sheet form : strain rate, thickness and temperature influences." Thesis, Brunel University, 2017. http://bura.brunel.ac.uk/handle/2438/15614.
Full textSmith, Anthony Justin. "Procedure and Results for Constitutive Equations for Advanced High Strength Steels Incorporating Strain, Strain Rate, and Temperature." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1343150464.
Full textBindas, Erica Bindas. "EFFECT OF TEMPERATURE, STRAIN RATE, AND AXIAL STRAIN ON DIRECT POWDER FORGED ALUMINUM-SILICON CARBIDE METAL MATRIX COMPOSITES." Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1530871866585058.
Full textZaroulis, John Spyros. "Temperature, strain rate and strain state dependence of evolution of mechanical behavior and structure of poly(ethylene-terephthalate) with finite strain deformation." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/11251.
Full textReedy, Michael Wayne. "An approach to low temperature high strain rate superplasticity in aluminum alloy 2090." Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/26891.
Full textCalmunger, Mattias. "High-Temperature Behaviour of Austenitic Alloys : Influence of Temperature and Strain Rate on Mechanical Properties and Microstructural Development." Licentiate thesis, Linköpings universitet, Konstruktionsmaterial, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-98242.
Full textRicheton, Julien. "Modeling and validation of the finite strain response of amorphous polymers for a wide range of temperature and strain rate." Université Louis Pasteur (Strasbourg) (1971-2008), 2005. http://www.theses.fr/2005STR13159.
Full textSammonds, Peter Robert. "Triaxial deformation experiments on natural sea ice as a function of temperature and strain rate." Thesis, University College London (University of London), 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241922.
Full textKhan, Amnah Sehar. "Electromechanical response of bulk PZT 95/5 and associated polymers across temperature and strain rate." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/48495.
Full textGockel, Brian T. "Constitutive Response of a Near-Alpha Titanium Alloy as a Function of Temperature and Strain Rate." Research Showcase @ CMU, 2016. http://repository.cmu.edu/dissertations/762.
Full textDupaix, Rebecca B. (Rebecca Brown) 1976. "Temperature and rate dependent finite strain behavior of poly(ethylene terephthalate) and poly(ethylene terephthalate)-glycol above the glass transition temperature." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/7972.
Full textIncludes bibliographical references (p. 333-348).
Poly(ethylene terephthalate) is widely used for consumer products such as drawn fibers, stretched films, and soda bottles. Much of its commercial success lies in the fact that it crystallizes at large strains during warm deformation processing. The imparted crystallinity increases its stiffness and strength, improves its dimensional stability, and increases its density. The crystallization process and the stress-strain behavior above the glass transition depend strongly on temperature, strain rate, strain magnitude, and strain state. A robust constitutive model to accurately account for this stress-strain behavior in the processing regime is highly desirable in order to predict and computationally design warm deformation processes to achieve desired end product geometries and properties. This thesis aims to better understand the material behavior above the glass transition temperature in the processing regime. It examines the strain rate, strain state, and temperature dependent mechanical behavior of two polymers: PET and PETG, an amorphous non-crystallizing copolymer of PET, in order to isolate the effects of crystallization on the stress-strain behavior. Experiments over a wide range of temperatures and strain rates were performed in uniaxial and plane strain compression. A constitutive model of the observed rate and temperature dependent stress-strain behavior was then developed. The model represents the material's resistance to deformation with two parallel elements: an intermolecular resistance to flow and a resistance due to molecular network interactions.
(cont.) The model predicts the temperature and rate dependence of many stress-strain features of PET and PETG very well, including the initial modulus, flow stress, initial hardening modulus, and dramatic strain hardening. The modeling results indicate that the large strain hardening behavior of both materials can only be captured by including a critical orientation parameter to halt the molecular relaxation process once the network achieves a specific level of molecular orientation. This suggests that much of the strain hardening in PET is due to molecular orientation and not to strain-induced crystallization. An example blow molding process is simulated to demonstrate the industrial applicability of the proposed model.
by Rebecca B. Dupaix.
Ph.D.
Wan, Margaret. "Assessment of occupational heat strain." [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001661.
Full textCaccialupi, Alessandro. "Systems development for high temperature, high strain rate material testing of hard steels for plasticity behavior modeling." Thesis, Available online, Georgia Institute of Technology, 2004:, 2003. http://etd.gatech.edu/theses/available/etd-04082004-180051/unrestricted/caccialupi%5Falessandro%5F200312%5Fms.pdf.
Full textMouille, Hervé. "Influence of strain rate and temperature upon the mechanical and fracture behavior of a simulated solid propellant /." This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-07212009-040252/.
Full textBonfils, Laure. "Characterisation of the high strain rate deformation behaviour of α-β titanium alloys at near-transus temperature." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:e2507c22-6478-4461-be57-347382a5ee0c.
Full textMouille, Hervé. "Influence of strain rate and temperature upon the mechanical and fracture behavior of a simulated solid propellant." Thesis, Virginia Tech, 1992. http://hdl.handle.net/10919/43774.
Full textPapo, Jones Malesela. "The effect of alloy chemistry and strain rate on the Md30 temperature of metastable austenitic stainless steels." Master's thesis, University of Cape Town, 1994. http://hdl.handle.net/11427/14045.
Full textThe work covered in this thesis provides a comprehensive discussion of the transformation behaviour of Type 304 metastable stainless steels with small' variations in alloy composition. The study focuses mainly on the austenite stability with respect to alloy composition, rate of deformation and temperature. To achieve these objectives, uniaxial tensile tests at 0.3 true strain were performed at low and high strain rates (10-3s-1 and 3 x 10-2s-1 respectively), in the temperature range of -60 to 55°C under isothermal testing conditions.
Allred, Jacob D. "An Investigation into the Mechanisms of Formation of the Hard Zone in FSW X65." BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/3806.
Full textPoxon, Sara. "The mechanical response of low to high density Rohacell foams." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:94065572-8e3c-4e68-8e40-12f148093717.
Full textUmberger, Pierce David. "Modeling the High Strain Rate Tensile Response and Shear Failure of Thermoplastic Composites." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/23846.
Full textPh. D.
Kuykendall, Katherine Lynn. "An Evaluation of Constitutive Laws and their Ability to Predict Flow Stress over Large Variations in Temperature, Strain, and Strain Rate Characteristic of Friction Stir Welding." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2768.
Full textDeibler, Lisa Anne. "Effects of Temperature, Stress State, and Strain Rate on Flow and Fracture of Mg Metallic Glass and Viscous Fluids." Cleveland, Ohio : Case Western Reserve University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1238707832.
Full textTorabiandehkordi, Noushin. "High and very high cycle fatigue behavior of DP600 dual-phase steel : correlation between temperature, strain rate, and deformation mechanisms." Thesis, Paris, ENSAM, 2017. http://www.theses.fr/2017ENAM0020/document.
Full textThis work is an attempt towards a better understanding of the high cycle and very high cycle fatigue behaviors of a ferritic-martensitic dual-phase steel, with a regard to temperature and strain rate effects, resulting from accelerated fatigue loading frequencies. The influence of frequency on fatigue response of DP600 steel was investigated by conducting ultrasonic and conventional low frequency fatigue tests. Fractography studies and microscopic observations on the surface of specimens were carried out to study the deformation and fracture mechanisms under low and ultrasonic frequencies. Moreover, in situ infrared thermography was carried out to investigate the thermal response and dissipative mechanisms of the material under fatigue tests. The S-N curves were determined from ultrasonic 20-kHz fatigue loadings and conventional tests at 30 Hz. Fatigue life for a given stress amplitude was found to be higher in the case of ultrasonic fatigue whereas the fatigue limit was the same for both cases. Moreover, crack initiation was always inclusion-induced under ultrasonic loading while under conventional tests it occurred at slip bands or defects on the surface. The inevitable temperature increase under ultrasonic fatigue at high stress amplitudes along with the rate dependent deformation behavior of ferrite, as a body centered cubic (BCC) structure, were found as the key parameters explaining the observed fatigue behavior and thermal response under low and ultrasonic frequencies. The discrepancies observed between conventional and ultrasonic fatigue tests were assessed through the mechanisms of screw dislocation mobility in the ferrite phase as a BCC structure. The higher fatigue life and inclusion-induced crack initiations in the case of ultrasonic loading were attributed to the dynamic strain aging, which resulted from the high temperature increases at high stress amplitudes. The existence of a transition in deformation regime from thermally-activated to athermal regime under ultrasonic fatigue loading by increasing the stress amplitude was confirmed. Below the fatigue limit, deformation occurred in thermally-activated regime while it was in athermal regime above the fatigue limit. Under conventional loading deformation occurred in athermal regime for all stress amplitudes. From the analysis of the experimental data gathered in this work, guidelines were given regarding the comparison and interpretation of S-N curves obtained from conventional and ultrasonic fatigue testing. A transition map was produced using the experimental results for DP600 steel as well as data available in the literature for other ferrite based steels, showing the correlation between thermally-activated screw dislocation movement and the absence of failure in very high cycle fatigue
Gur, S., S. K. Mishra, and G. N. Frantziskonis. "Thermo-mechanical strain rate-dependent behavior of shape memory alloys as vibration dampers and comparison to conventional dampers." SAGE PUBLICATIONS LTD, 2015. http://hdl.handle.net/10150/615541.
Full textNanjappa, Jagdish. "Web-based dynamic material modeling." Ohio University / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1174918633.
Full text池田, 光芳, Mitsuyoshi IKEDA, 黛青 趙, Daiqing ZHAO, 博史 山下, and Hiroshi YAMASHITA. "酸素富化空気を用いた対向流火炎の火炎構造およびNOx生成に関する数値解析 (速度こう配がNOx生成の抑制に与える影響)." 日本機械学会, 2004. http://hdl.handle.net/2237/8988.
Full textAdharapurapu, Raghavendra R. "Phase transformations in nickel-rich nickel-titanium alloys influence of strain-rate, temperature, thermomechanical treatment and nickel composition on the shape memory and superelastic characteristics /." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2007. http://wwwlib.umi.com/cr/ucsd/fullcit?p3262183.
Full textTitle from first page of PDF file (viewed July 10, 2007). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
Rajasekaran, Nepolean. "A Nonlinear Constitutive Model for High Density Polyethylene at High Temperature." University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1298041213.
Full textVautrot, Mathieu. "Étude du comportement mécanique des matériaux dans des conditions étendues de vitesses et de températures : application à l'acier C68 dans le cas d'une opération de formage incrémental." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00795973.
Full textPiao, Kun. "An Elevated-Temperature Tension-Compression Test and Its Application to Mg AZ31B." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1316096630.
Full textChu, XingRong. "Caractérisation expérimentale et prédiction de la formabilité d'un alliage d'aluminium en fonction de la température et de la vitesse de déformation." Phd thesis, INSA de Rennes, 2013. http://tel.archives-ouvertes.fr/tel-00910093.
Full textSimon, Pierre. "Modélisation du comportement mécanique et de la rupture en conditions dynamiques d’aciers de structure et à blindage." Thesis, Université de Lorraine, 2019. http://www.theses.fr/2019LORR0042/document.
Full textThe present study deals with the modelling of the thermo-viscoplastic behaviour and the failure of a structural steel “S355NL” and a naval armour steel. An experimental campaign have been performed to observe the mechanical response of these material over a wide range of conditions, especially their sensitivities to the strain rate (from 〖10〗^(-3) to ~〖10〗^4 s^(-1)) and to the temperature (from -100 to 200 °C). The obtained results have been used to identify the parameters of several constitutive relations. A new approach have been developed to improve the description of the strain rate sensitivity. These relations have been implemented in numerical simulation to model the impact of a projectile on these steels. The obtained results have been compared with corresponding experimental tests in order to assess the reliability of the data and the hypothesis used in the simulations
Zhao, Yong. "Morphology and electrical trees in semi-crystalline polymers." Thesis, University of Reading, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314355.
Full textDorléans, Vincent. "Caractérisation et modélisation du comportement et de la rupture de thermoplastiques pour une large gamme de vitesse de déformation et de température." Thesis, Valenciennes, Université Polytechnique Hauts-de-France, 2020. http://www.theses.fr/2020UPHF0031.
Full textNowadays, polymers are used for the interior parts of vehicles. It is particularly the case for components such as dashboards and door panels. These elements are submitted to requirements imposed by international regulations in order to minimize the injuries of the passengers in case of a car crash. It is therefore essential to characterize the mechanical properties of those polymeric materials for several load cases on a wide range of strain-rate and temperature. The collected data can be used to fill numerical behavior models supposed to accurately predict the whole behavior of a polymer, if possible up the failure, taking all polymer behavior specificities into account. Indeed, aiming at optimizing development costs, numerical simulation is currently a key tool in the design of engineering components. Thus, in this thesis work, it is proposed to characterize the complete whole behavior of a semi-crystalline polymer in a wide range of strain-rate and temperature until failure. First, some DMA and tensile tests are carried out in order to characterize the viscoelastic and viscoplastic properties of the material. Then, time-temperature-superposition principle is introduced and validated in the two domains. A model based on the constitutive equations developed by Balieu and al. and enriched thanks to this principle is identified and implemented in the Ls Dyna code. It is validated by comparison with experimental results. Secondly, the work focusses on the experimental characterization and the modelling of failure. Several specimen geometries are designed to reach some specific triaxiality ratios and are tested at different strain-rates and two temperatures +23 and -30°C. A failure behavior surface is thus identified and introduced in the GISSMO failure model. The complete model of behavior, i.e. constituted of behavior laws and failure criterion, is then validated based on comparison with experimental data extracted from tests on specimens, but also on an industrial demonstrator
Jia, Bin. "Caractérisation expérimentale et modélisation du comportement de l'acier inoxydable 304 sous différentes vitesses de déformation et températures." Thesis, Paris, ENSAM, 2019. http://www.theses.fr/2019ENAM0056.
Full textDue to the unique Transformation Induced Plasticity (TRIP) effect, 304 austenitic stainless steel (ASS) is widely used in many engineering areas. During working and manufacturing process or in service, it may undergo deformation over a wide range of strain rates and temperatures. The current work presents a systematic deformation behavior study of 304 ASS by both experiments and numerical simulations. With an original cooling device coupled to the split Hopkinson pressure bar system, the compression behavior at strain rates between 0.001 s-1 and 3000 s-1 and temperatures between -163°C and 172°C was investigated. An extension of the Rusinek-Klepaczko (RK) model considering strain-induced martensitic transformation (SIMT) phenomenon was also used to simulate the thermo-viscoplastic behavior of this steel. To study the deformation behavior at extremely high strain rates exceeding 3000 s-1, a new single shear zone (SSS) specimen has been proposed and validated. Then, the effects of strain rate between 3000 s-1 and 39000 s-1 was analyzed. Finally, with a specially designed cooling device, the ballistic impact behavior under initial projectile velocities between 80 and 180 m.s-1 and temperatures between -163°C and 200°C was studied. By comparison between experiments and numerical simulations for perforation, the previously obtained constitutive relations were validated
Cook, Frederick Philip. "Characterization of UHMWPE Laminates for High Strain Rate Applications." Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/30849.
Full textMaster of Science
Kaddouri, Zayad. "Impact de la température et de la succion sur le fluage d’une argile compactée." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0194/document.
Full textCompacted clays are used in many applications, including geotechnical and environmental geotechnical applications, due to their low permeability and retention properties. However, once in place, these materials could be exposed to thermal and/or water variations in the long and very long term. The main objective of this work is to experimentally quantify the impact of these variations on the compressibility of a compacted clay, and in particular its creep. With this objective, oedometric cells with controlled temperatures between 5 and 70°C were developed. Two types of oedometers with suction controlled by osmotic and saline methods were used in a suction range of 0 to 20.8 MPa, and at a constant temperature of 20°C. These devices were used to study creep up to a vertical stress of 3600 kPa. The study focused on the behavior of a moderately swelling compacted clay. The obtained results first showed that the yield stress σ’p decreases as the temperature increases. The creep coefficient Cαe increases with temperature, this effect being particularly marked at higher stresses. A linear relationship between the creep coefficient Cαe and the incremental compression index C*c was observed within the stress range considered and the ratio (Cαe /C*c) is temperature dependent. Then, two complementary experimental approaches (creep tests by steps or at controlled strain rate) highlighted the dependence of creep characteristics on soil suction. In addition, the yield stress σ’p increases with increasing strain rate έv and suction. In contrast, the compression index Cc and the creep coefficient Cαe vary in a non-monotonic manner with a maximum value under suction of 3.5 and 2 MPa, respectively. The evolution of these parameters appears to be strongly related to the internal structure of the soil. Analysis of the variation of σ’p with έv and Cαe with Cc showed that the relationship Δlog σ’p /Δlog έv =Cαe/Cc is also valid for the studied compacted clayey soil in saturated and unsaturated states. In conclusion, the results of this work allowed information to be gathered for better understanding the compressibility and creep behavior of compacted clayey soils as a function of temperature and suction
Forsyth, David I. "Fibre optic sensors based on fluorescence techniques for temperature and strain measurement." Thesis, City University London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269363.
Full textWilson, Dwayne. "Ability of Physiological Strain Index to Discriminate Between Sustainable and Unsustainable Heat Stress." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6981.
Full textŠlais, Miroslav. "Studium vlivu rychlostních a teplotních parametrů na tvařitelnost Ti slitin." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-234028.
Full textLiu, Shibo. "Numerical and experimental study on residual stresses in laser beam welding of dual phase DP600 steel plates." Thesis, Rennes, INSA, 2017. http://www.theses.fr/2017ISAR0003/document.
Full textLaser welding process is widely used in assembly work of automobi le industry. DP600 dual phase steeis a high strength steel to reduce automobile weight. Residual stresses are produced during laser weldingDP600. Continuum mechanics is used for analyzing res idual stresses by finite element simulation.Based on experimental tensile tests, the DP600 steel constitutive model are identified. The hardening termaccording to Ludwik law, Voce law and a proposed synthesis model are studied. The temperature sensitivityof Johnson-Cook, Khan, Chen and a proposed temperature sensitivity model are investigated. The strain ratesensitivity model proposed by A. Gavrus and planar anisotropy defined by Hi ll theory are also used.Cellul ar Automaton (CA) 20 method are programed for the simulation of solidification microstructureevolution during laser welding process. The temperature field of CA are imported from finite element analysimodel. The analysis function of nucleation, solid fraction, interface concentration, surface tension an isotropy,diffusion, interface growth ve locity and conservation equations are presented in detail. By comparing thesimulation and experimental results, good accordances are found.Modelling by a finite element method of laser welding process are presented. Geometry of specimen, heatsource, boundary conditions, DP600 dual phase steel material properties such as conductivity, density, specifiheat, expansion, elasticity and plasticity are introduced. Models analyzing hardening term, strain ratesensitivity, temperature sensitivity, plastic an isotropy and elastic an isotropy are simulated.The numerical results of laser welding DP600 steel process are presented. The influence of hardening term,strain rate sensitivity, temperature sensitivity and anisotropy on residual stresses are analyzed. Comparisonwith experimental data show good numerical accuracy.Keywords: Laser Welding, DP600, Residual Stress, Cellular Automaton, Hardening, Temperature sensitivity,Strain Rate Sensitivity, Anisotropy, Mixture dual phase law
Konieczny, Mark J. "Full-Field Strain and Temperature Measurement of Epoxy Resin PR-520 Subjected to Tensile, Compressive, and Torsional Loading at Various Strain Rates." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1556880386878411.
Full textSurand, Martin. "Étude du comportement viscoplastique en traction et en fluage de l’alliage TA6V de 20 à 600 degrés Celsius." Thesis, Toulouse, INPT, 2013. http://www.theses.fr/2013INPT0096/document.
Full textClassical life time of aeronautic parts lasts several decades. However, for some special applications with short life time and without repairs or recovery of parts, material design is tailored “close to real needs”. This justifies characterization at higher temperatures of well-known alloys and not developing new alloys. The study presented in this manuscript is included within this frame of short life applications. Forged Ti-6Al-4V (Ti-64) alloy with a bimodal microstructure is the most common titanium alloy in aeronautic and is usually limited below 350°C applications during classical life time. In order to use this alloy during a ten hour application, this thesis consists in characterizing Ti-64 from 20°C to 600°C. In a first time, characterization is focused on initial metallurgical state coming from a forged billet and on its thermal stability. Then, mechanical behavior of Ti-64 is studied by tensile testing from 20°C to 600°C, highlighting strain rate sensitivity (SRS) of flow stress. SRS is depending on temperature. This dependency is usually due to dynamic strain ageing phenomenon. Mechanical behavior characterization continues with creep testing from 20°C to 600°C for several stress levels (from 0.3 to 1 time yield stress values). Different behaviors versus temperature are revealed. Deformed samples by tensile testing and creep testing are analyzed by transmission electronic microscopy to bring information about deformation mechanisms controlling the different behaviors of the alloy. Thanks to tensile and creep testing, a viscoplastic modeling of Ti-64 from 20°C to 600°C has been performed and validated by fitting results from complex thermo mechanical tests with finite elements simulations. Comparison of mechanical behavior with deformation mechanisms leads to a discussion about viscoplasticity of Ti-64, and finally results in a proposal modeling creep behavior of Ti-64 from 20°C to 600°C. The model is able to estimate qualitatively creep curves using strain rate sensitivity measured during tensile tests
Hasni, Abdellatif. "Etude des principales proprietes chimiques des solutions eau-chlorure de magnesium : application a la comprehension des phenomenes de corrosion sous contrainte de l'acier inoxydable austenitique 17-12-mo." Paris 6, 1988. http://www.theses.fr/1988PA066287.
Full textZHOU, XIAO-WEI. "Contribution au comportement dynamique des materiaux metalliques : etude experimentale de l'alliage al-li en torsion et en compression, simulation numerique du processus de penetration a grande vitesse." Nantes, 1988. http://www.theses.fr/1988NANT2014.
Full textCastres, Magali. "Modélisation dynamique avancée des composites à matrice organique (CMO) pour l’étude de la vulnérabilité des structures aéronautiques." Thesis, Ecole centrale de Lille, 2018. http://www.theses.fr/2018ECLI0006/document.
Full textNowadays, organic matrix composite materials are widely used in the transportation industry, and particularly in the aeronautical industry. To provide an optimal dimensioning of the structures, it is necessary to study the mechanical behavior of OMC on a large range of strain rates and temperatures. The aim of this PhD thesis is to propose a behavior and a rupture model to predict the mechanical response of OMC for a large range of strain rates and temperatures. The research was initially focused on the characterization of the transition between the linear and nonlinear behavior of the material T700GC/M21, a carbon / epoxy unidirectional laminate as well as the strain rate and temperature dependencies of this transition. The work was then focused on the experimental study of the nonlinear damaged behavior of the T700GC/M21. Finally, completing these first two steps, an updated version of the behavior model available at ONERA (OPFM) was proposed which includes the transition between linear and nonlinear behavior and the influence of strain rate and temperature on the mechanical response of the material