Contents
Academic literature on the topic 'Temperaturförändring'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Temperaturförändring.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Temperaturförändring"
Andersson, Helena, and Nathalie Adolfsson. "Temperaturförändring under och efter etappkylningsprocessen." Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-80138.
Full textIskandar, Hany, and Adam Markros. "Modellering och simulering av temperaturförändring i personbilsdäck under körning." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210797.
Full textNieto, Peroy Victor. "Detektion av temperaturförändringar med hjälp av trådlösa sensornät." Thesis, KTH, Reglerteknik, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-107516.
Full textAndersson, Johanna. "Optimering av driftstemperatur vid mesofil rötning av slam : - funktionskontroll vid Uppsalas reningsverk." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-381615.
Full textEnergy efficient processes and the use of fossil free fuels play an important role in order to reduce the impact of climate change. Anaerobic digestion is a common way for stabilizing sewage sludge at wastewater treatment plants (WWTP). One of the benefits with anaerobic digestion is that it also produces biogas, a fossil free fuel with low greenhouse gas emissions. An operational temperature within the mesophilic range has proven to give a stable process with an unfluctuating production of gas. The mesophilic temperature range between 25-40°C but most processes are operated between 35-40°C. This study investigates the opportunity to lower the temperature within the mesophilic range in order to reduce energy consumption. It is important to maintain the production of biogas with a lower temperature. Therefore, the reduction in VS-content (VS-volatile solids), methane yield and time for degradation was determined by a BMP-experiment (BMP-Biochemical Methane Potential) in three different temperatures (32, 34.5 and 37.5°C). In order to quantify the reduction in heat consumption with lower operational temperatures the change in heat balance for a full-scale WWTP in Uppsala was calculated. A major part of the operational cost is dewatering of sludge and it is therefore important that it does not deteriorate with a lower temperature. The effect on the dewaterability at different temperatures was examined by a filterability test measuring CST (capillary suction time). The results from the study showed no significant difference in methane yield between 37.5°C and 34.5°C. The methane yield at 32°C was 11 % lower compared to 37.5°C but the degradation kinetic was not affected by a temperature change. The reduction in heat consumption was 14 % when the temperature was reduced to 34.5°C and 27 % when it was reduced to 32°C. The filterability test did not show a deterioration with lower temperatures. The study showed that it is possible to reduce the operational temperature for anaerobic digestion at the WWTP in Uppsala in order to reduce the energy consumption. To confirm these results a continuously experiment should be done, but this study shows that it is possible to get a successful degradation in a lower mesophilic temperature. This leads the way for further investigations within the mesophilic range and could lead to optimizing anaerobic digestion and the opportunity to get an energy efficient production of biogas.
Sten, Gustav. "Utmattnings- och slitageuppskatting på fjärrvärmesystem - Till följd av tryck- och temperaturförändringar." Thesis, KTH, Skolan för kemivetenskap (CHE), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-153490.
Full textTelge Nät is the current owner and operator for Södertäljes district heating system. In this project apart of this system which includes Scania industial area as well as the residential areas of Pershagenand Värdsholmen will be investigated. The heating for this system is provided partly by thecogeneration plant of Igelsta as well as from heat production and recovery within the area of Scania.The main purpose of this project is to investigate whether or not these unusual operationcircumstances result in any temperature or pressure fluctuations which could lead to advancedfatigue on the system. Temperature fluctuations have been analyzed for main pipe as well as forB006, B210 and Clab which are all larger complexes within the area.Pressure fluctuations have been analyzed for the complex of B210 where hot water as well assuperheated water is used. This leads to intense pump and valve adjustments which is likely to causea lot of pressure fluctuations. The pressure is also measured at the main pipe to investigate if thefluctuations from B210 spread to other parts of the system.Analysis of the temperature fluctuations data from 2012 showed a correlation between the outdoorstemperature and the temperature within the district heating system. Following investigationsmeasured the amount of temperature cycles at the different complexes at several differentmagnitudes. The Temperature cycles were thereafter converted into full temperature cycleequivalents at 110°C using Palmgren-Miners hypothesis. These results were used to maketemperature fatigue estimations for the different complexes. The estimations showed that Clab wasa relatively stable system and that the fluctuations were kept within an acceptable range. Thetemperature of the feed pipe at B006 was proven to be quite unstable; this could be a direct result ofthe overall instabilities on the main pipe caused by heat production and heat recovery within Clabsand B210.The temperature at B210 was very unstable for the superheated water return pipe and extremelyunstable for the hot water return pipe. This instability could in the long run lead to a severelydecreased lifetime for the whole system. The instability is likely to be caused by a constant feed ofsuperheated water for heating at a paint shop which is located within B210, water that is fedregardless if there is need for heating in the paint shop or not. Excess superheated water which is notused for heating the paint shop is redirected to heat areas and pipes where hot water is normally theheat source, something which leads to large fluctuations on the system. By reducing the excess feedof superheated water to the paint shop a large portion of the problems with the systems could besolved.The pressure fluctuations at B210 were analyzed with a measure interval of 0.1 seconds and 30seconds between the measurements. This was done to determine whether or not the intervalbetween the measurements had a big influence on the registered pressure transient. Analysisindicated that pressure transients where registered as slightly bigger and relatively faster when themeasure interval of 0.1 seconds was used. It is however known that even a measure interval of 0.1seconds is far too slow to provide any results on the actual magnitude of the pressure transient. Theresult of this analyze should therefore not be considered as definitive.The largest pressure transients at B210 were registered at the startup of the paint shop. These werehowever still at a level where no damage is expected to occur on the system. Measurements at themain pipe showed no traces of the pressure transients from B210. This leads to the concussion thatthe analyzed pressure fluctuations are kept within an acceptable range.
Viktor, Olsson. "Inverkan av omgivande klimatets temperaturförändringar på mätresultat vid fuktmätning i betong." Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20297.
Full textIn this bachelor thesis a study is done to see how ambient climate changes impacts the measurement results during moisture measurements in concrete. The method of measurement used is borehole measurements according to the RBK-system, Manual – Fuktmätning i betong. The experiments were conducted in a laboratory environment on a concrete slab, which was casted with bascement and had a w/c ratio of 0,38. To see how well the moisture meter performed during ambient climate changes eight thermistors were cast into the concrete slab to log the temperature at different depths of the concrete during the ambient climate changes.The results show that the moisture meter does read the actual temperature of the concrete during an ambient climate change, however the ambient climate change had an impact on the measurement results of the relative humidity (RH). If a snapshot measurement of the RH is done after a temperature change in the ambient climate, an incorrect measurement result of the RH is obtained. When the obtained RH is converted to RH at 20°C the fault will get enlarged. To obtain a correct RH measurement when a field measurement is done, a logged measurement should be conducted.
Elevant, Mikael. "Temperaturförändringens påverkan på vägdimensioneringsprocessen." Thesis, KTH, Byggvetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-174143.
Full textThe data from Sweden’s meteorological and hydrological institute suggests the temperatures in Sweden will rise in the future. It also suggests that the future temperature intervals will be smaller than they are today. This will affect the methods that are used for designing roads. Currently Trafikverket takes into account the temperature of the asphalt and the number of days of a specific climate period when considering climate temperature. Both these variables will have to be checked and possibly redone. This change will affect several areas that are important for the design, among these are the choice of materials, the amount of materials used, the cost of building and maintaining a road, a roads expected lifetime and the requirements for future asphalt layers. Add to that Trafikverket will probably need to recheck several table values and the climate zones that the organization uses today.
Books on the topic "Temperaturförändring"
Lael, Brainard, Jones Abigail, and Purvis Nigel, eds. Climate change and global poverty: A billion lives in the balance? Washington, D.C: Brookings Institution Press, 2009.
Find full text