Academic literature on the topic 'Temporal Graph Processing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Temporal Graph Processing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Temporal Graph Processing"

1

Christensen, Andrew J., Ananya Sen Gupta, and Ivars Kirsteins. "Sonar target feature representation using temporal graph networks." Journal of the Acoustical Society of America 151, no. 4 (2022): A102. http://dx.doi.org/10.1121/10.0010791.

Full text
Abstract:
Autonomous sonar target recognition suffers from uncertainty caused by waveguide distortions to signal, unknown target geometry, and morphing target features. Typical “black-box” neural networks do not produce physically interpretable features and, therefore, are not effective in meeting these challenges. The primary objective of our work is to harness signal processing with machine learning to extract braided features that allow such physical interpretation by a domain expert. In this work, we introduce a feature extraction method using graph neural networks (GNNs) that seeks to discover braid manifolds from sonar magnitude spectra data. The approach involves representing the sonar magnitude spectra as sparse, dynamic graphs. These dynamic graphs can then be fed into a GNN as sequences of timed events to produce feature dictionaries that are resilient to environmental uncertainty and agnostic to ping direction. The ability of GNNs to learn complex systems of interactions makes them a great choice for braid-like feature discovery. To handle the evolving dynamic features of the sonar spectra graphs, a variation of a GNN, called temporal graph networks (TGNs), is used. TGNs utilize memory modules and graph-based operators to outperform previous GNN-based approaches when handling dynamic graphs. We use TGNs to model the evolution of the sonar spectra graphs and ultimately perform graph-based classification. Preliminary results performed on the Malta Plateau field experiment are presented.
APA, Harvard, Vancouver, ISO, and other styles
2

Choi, Jeongwhan, Hwangyong Choi, Jeehyun Hwang, and Noseong Park. "Graph Neural Controlled Differential Equations for Traffic Forecasting." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 6 (2022): 6367–74. http://dx.doi.org/10.1609/aaai.v36i6.20587.

Full text
Abstract:
Traffic forecasting is one of the most popular spatio-temporal tasks in the field of machine learning. A prevalent approach in the field is to combine graph convolutional networks and recurrent neural networks for the spatio-temporal processing. There has been fierce competition and many novel methods have been proposed. In this paper, we present the method of spatio-temporal graph neural controlled differential equation (STG-NCDE). Neural controlled differential equations (NCDEs) are a breakthrough concept for processing sequential data. We extend the concept and design two NCDEs: one for the temporal processing and the other for the spatial processing. After that, we combine them into a single framework. We conduct experiments with 6 benchmark datasets and 20 baselines. STG-NCDE shows the best accuracy in all cases, outperforming all those 20 baselines by non-trivial margins.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhao, Xiaojuan, Aiping Li, Rong Jiang, Kai Chen, and Zhichao Peng. "Householder Transformation-Based Temporal Knowledge Graph Reasoning." Electronics 12, no. 9 (2023): 2001. http://dx.doi.org/10.3390/electronics12092001.

Full text
Abstract:
Knowledge graphs’ reasoning is of great significance for the further development of artificial intelligence and information retrieval, especially for reasoning over temporal knowledge graphs. The rotation-based method has been shown to be effective at modeling entities and relations on a knowledge graph. However, due to the lack of temporal information representation capability, existing approaches can only model partial relational patterns and they cannot handle temporal combination reasoning. In this regard, we propose HTTR: Householder Transformation-based Temporal knowledge graph Reasoning, which focuses on the characteristics of relations that evolve over time. HTTR first fuses the relation and temporal information in the knowledge graph, then uses the Householder transformation to obtain an orthogonal matrix about the fused information, and finally defines the orthogonal matrix as the rotation of the head-entity to the tail-entity and calculates the similarity between the rotated vector and the vector representation of the tail entity. In addition, we compare three methods for fusing relational and temporal information. We allow other fusion methods to replace the current one as long as the dimensionality satisfies the requirements. We show that HTTR is able to outperform state-of-the-art methods in temporal knowledge graph reasoning tasks and has the ability to learn and infer all of the four relational patterns over time: symmetric reasoning, antisymmetric reasoning, inversion reasoning, and temporal combination reasoning.
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, Jun. "Motion Action Analysis at Basketball Sports Scene Based on Image Processing." Scientific Programming 2022 (March 7, 2022): 1–11. http://dx.doi.org/10.1155/2022/7349548.

Full text
Abstract:
To solve the problems of low accuracy and high time cost in manual recording and statistics of basketball data, an automatic analysis method of motion action under the basketball sports scene based on the spatial temporal graph convolutional neural network is proposed. By using the graph structure in the data structure to model the joints and limbs of the human body, and using the spatial temporal graph structure to model the posture action, the extraction and estimation of human body posture in basketball sports scenes are realized. Then, training combined with transfer learning, the recognition of motion fuzzy posture is realized through the classification and application of a label subset. Finally, using the self-made OpenCV to collect and calibrate NBA basketball videos, the effectiveness of the proposed method is verified by analyzing the motion action. The results show that the proposed method based on the spatial temporal graph convolutional neural network can recognize all kinds of movements in different basketball scenes. The average recognition accuracy is more than 75%. It can be seen that the method has certain practical application value. Compared with the common motion analysis method feature descriptors, the motion action analysis method based on the spatial temporal graph convolution neural network has higher identification accuracy and can be used for motion action analysis in the actual basketball sports scenes.
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Jing, Wenyue Guo, Haiyan Liu, Xin Chen, Anzhu Yu, and Jia Li. "Predicting User Activity Intensity Using Geographic Interactions Based on Social Media Check-In Data." ISPRS International Journal of Geo-Information 10, no. 8 (2021): 555. http://dx.doi.org/10.3390/ijgi10080555.

Full text
Abstract:
Predicting user activity intensity is crucial for various applications. However, existing studies have two main problems. First, as user activity intensity is nonstationary and nonlinear, traditional methods can hardly fit the nonlinear spatio-temporal relationships that characterize user mobility. Second, user movements between different areas are valuable, but have not been utilized for the construction of spatial relationships. Therefore, we propose a deep learning model, the geographical interactions-weighted graph convolutional network-gated recurrent unit (GGCN-GRU), which is good at fitting nonlinear spatio-temporal relationships and incorporates users’ geographic interactions to construct spatial relationships in the form of graphs as the input. The model consists of a graph convolutional network (GCN) and a gated recurrent unit (GRU). The GCN, which is efficient at processing graphs, extracts spatial features. These features are then input into the GRU, which extracts their temporal features. Finally, the GRU output is passed through a fully connected layer to obtain the predictions. We validated this model using a social media check-in dataset and found that the geographical interactions graph construction method performs better than the baselines. This indicates that our model is appropriate for fitting the complex nonlinear spatio-temporal relationships that characterize user mobility and helps improve prediction accuracy when considering geographic flows.
APA, Harvard, Vancouver, ISO, and other styles
6

Ke, Xiangyu, Arijit Khan, and Francesco Bonchi. "Multi-relation Graph Summarization." ACM Transactions on Knowledge Discovery from Data 16, no. 5 (2022): 1–30. http://dx.doi.org/10.1145/3494561.

Full text
Abstract:
Graph summarization is beneficial in a wide range of applications, such as visualization, interactive and exploratory analysis, approximate query processing, reducing the on-disk storage footprint, and graph processing in modern hardware. However, the bulk of the literature on graph summarization surprisingly overlooks the possibility of having edges of different types. In this article, we study the novel problem of producing summaries of multi-relation networks, i.e., graphs where multiple edges of different types may exist between any pair of nodes. Multi-relation graphs are an expressive model of real-world activities, in which a relation can be a topic in social networks, an interaction type in genetic networks, or a snapshot in temporal graphs. The first approach that we consider for multi-relation graph summarization is a two-step method based on summarizing each relation in isolation, and then aggregating the resulting summaries in some clever way to produce a final unique summary. In doing this, as a side contribution, we provide the first polynomial-time approximation algorithm based on the k -Median clustering for the classic problem of lossless single-relation graph summarization. Then, we demonstrate the shortcomings of these two-step methods, and propose holistic approaches, both approximate and heuristic algorithms, to compute a summary directly for multi-relation graphs. In particular, we prove that the approximation bound of k -Median clustering for the single relation solution can be maintained in a multi-relation graph with proper aggregation operation over adjacency matrices corresponding to its multiple relations. Experimental results and case studies (on co-authorship networks and brain networks) validate the effectiveness and efficiency of the proposed algorithms.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Guoxing, Haixiao Wang, and Yuanpu Yin. "Multi-type Parameter Prediction of Traffic Flow Based on Time-space Attention Graph Convolutional Network." International Journal of Circuits, Systems and Signal Processing 15 (August 11, 2021): 902–12. http://dx.doi.org/10.46300/9106.2021.15.97.

Full text
Abstract:
Graph Convolutional Neural Networks are more and more widely used in traffic flow parameter prediction tasks by virtue of their excellent non-Euclidean spatial feature extraction capabilities. However, most graph convolutional neural networks are only used to predict one type of traffic flow parameter. This means that the proposed graph convolutional neural network may only be effective for specific parameters of specific travel modes. In order to improve the universality of graph convolutional neural networks. By embedding time feature and spatio-temporal attention layer, we propose a spatio-temporal attention graph convolutional neural network based on the attention mechanism of the neural network. Through experiments on passenger flow data and vehicle speed data of two different travel modes (Hangzhou Metro Data and California Highway Data), it is verified that the proposed spatio-temporal attention graph convolutional neural network can be used to predict passenger flow and vehicle speed simultaneously. Meanwhile, the error distribution range of the proposed model is minimum, and the overall level of prediction results is more accurate.
APA, Harvard, Vancouver, ISO, and other styles
8

Zheng, Xiaolong, Dongdong Guan, Bangjie Li, Zhengsheng Chen, and Lefei Pan. "Global and Local Graph-Based Difference Image Enhancement for Change Detection." Remote Sensing 15, no. 5 (2023): 1194. http://dx.doi.org/10.3390/rs15051194.

Full text
Abstract:
Change detection (CD) is an important research topic in remote sensing, which has been applied in many fields. In the paper, we focus on the post-processing of difference images (DIs), i.e., how to further improve the quality of a DI after the initial DI is obtained. The importance of DIs for CD problems cannot be overstated, however few methods have been investigated so far for re-processing DIs after their acquisition. In order to improve the DI quality, we propose a global and local graph-based DI-enhancement method (GLGDE) specifically for CD problems; this is a plug-and-play method that can be applied to both homogeneous and heterogeneous CD. GLGDE first segments the multi-temporal images and DIs into superpixels with the same boundaries and then constructs two graphs for the DI with superpixels as vertices: one is the global feature graph that characterizes the association between the similarity relationships of connected vertices in the multi-temporal images and their changing states in a DI, the other is the local spatial graph that exploits the change information and contextual information of the DI. Based on these two graphs, a DI-enhancement model is built, which constrains the enhanced DI to be smooth on both graphs. Therefore, the proposed GLGDE can not only smooth the DI but also correct the it. By solving the minimization model, we can obtain an improved DI. The experimental results and comparisons on different CD tasks with six real datasets demonstrate the effectiveness of the proposed method.
APA, Harvard, Vancouver, ISO, and other styles
9

Steinbauer, Matthias, and Gabriele Anderst Kotsis. "DynamoGraph: extending the Pregel paradigm for large-scale temporal graph processing." International Journal of Grid and Utility Computing 7, no. 2 (2016): 141. http://dx.doi.org/10.1504/ijguc.2016.077491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Yaosen, Bing Guo, Yan Shen, Wei Wang, Weichen Lu, and Xinhua Suo. "Boundary graph convolutional network for temporal action detection." Image and Vision Computing 109 (May 2021): 104144. http://dx.doi.org/10.1016/j.imavis.2021.104144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography