Academic literature on the topic 'Temporale, region'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Temporale, region.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Temporale, region"
Vadlamudi, L., R. Hatton, K. Byth, J. Harasty, S. Vogrin, M. J. Cook, and A. F. Bleasel. "Volumetric analysis of a specific language region – the planum temporale." Journal of Clinical Neuroscience 13, no. 2 (February 2006): 206–13. http://dx.doi.org/10.1016/j.jocn.2005.03.026.
Full textKulynych, Jennifer J., Katalin Vladar, Bryan D. Fantie, Douglas W. Jones, and Daniel R. Weinberger. "Normal Asymmetry of the Planum Temporale in Patients with Schizophrenia." British Journal of Psychiatry 166, no. 6 (June 1995): 742–49. http://dx.doi.org/10.1192/bjp.166.6.742.
Full textShiell, Martha M., François Champoux, and Robert J. Zatorre. "The Right Hemisphere Planum Temporale Supports Enhanced Visual Motion Detection Ability in Deaf People: Evidence from Cortical Thickness." Neural Plasticity 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/7217630.
Full textHugdahl, Kenneth, and René Westerhausen. "What Is Left Is Right." European Psychologist 14, no. 1 (January 2009): 78–89. http://dx.doi.org/10.1027/1016-9040.14.1.78.
Full textThaler, L., J. L. Milne, S. R. Arnott, D. Kish, and M. A. Goodale. "Neural correlates of motion processing through echolocation, source hearing, and vision in blind echolocation experts and sighted echolocation novices." Journal of Neurophysiology 111, no. 1 (January 1, 2014): 112–27. http://dx.doi.org/10.1152/jn.00501.2013.
Full textKutová, M., J. Mrzílková, J. Riedlová, and P. Zach. "Asymmetric Changes in Limbic Cortex and Planum Temporale in Patients with Alzheimer Disease." Current Alzheimer Research 15, no. 14 (November 2, 2018): 1361–68. http://dx.doi.org/10.2174/1567205015666181004142659.
Full textSmith, Kevin R., I.-Hui Hsieh, Kourosh Saberi, and Gregory Hickok. "Auditory Spatial and Object Processing in the Human Planum Temporale: No Evidence for Selectivity." Journal of Cognitive Neuroscience 22, no. 4 (April 2010): 632–39. http://dx.doi.org/10.1162/jocn.2009.21196.
Full textWen, Hung Tzu, Albert L. Rhoton, Evandro de Oliveira, Luiz Henrique M. Castro, Eberval Gadelha Figueiredo, and Manoel Jacobsen Teixeira. "Microsurgical Anatomy of the Temporal Lobe: Part 2—Sylvian Fissure Region and Its Clinical Application." Operative Neurosurgery 65, suppl_6 (December 1, 2009): ons1—ons36. http://dx.doi.org/10.1227/01.neu.0000336314.20759.85.
Full textFerone, E., A. Pierallini, M. Bonamini, A. Bozzao, P. P. Quarato, M. T. Giallonardo, and L. M. Fantozzi. "Utilità delle sequenze turbo-flair e analisi volumetrica della regione ippocampale nella valutazione del paziente con epilessia temporale farmaco-resistente." Rivista di Neuroradiologia 10, no. 2_suppl (October 1997): 54–56. http://dx.doi.org/10.1177/19714009970100s220.
Full textANTAL, A., J. BAUDEWIG, W. PAULUS, and P. DECHENT. "The posterior cingulate cortex and planum temporale/parietal operculum are activated by coherent visual motion." Visual Neuroscience 25, no. 1 (January 2008): 17–26. http://dx.doi.org/10.1017/s0952523808080024.
Full textDissertations / Theses on the topic "Temporale, region"
TON, VAN NGHIA. "Le lambeau temporal, etude anatomique et clinique : a propos de trente-cinq cas." Lille 2, 1988. http://www.theses.fr/1988LIL2M104.
Full textKoca, Thimjo. "Spatio-Temporal Regions in the Context of Aircraft En-route Tactical Con ict Resolution." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670589.
Full textPara hacer frente a la creciente demanda de uso del espacio aéreo, se esperan cambios drásticos en la presente Gestión del Tránsito Aéreo (ATM). Existen 2 líneas de pensamiento que agrupan las diferentes alternativas para un horizonte de tiempo estratégico, que se extiende hasta 2050. Una se basa en un movimiento hacia el espacio aéreo no controlado y el concepto de vuelo libre. La otra busca moverse hacia la dirección opuesta, la del espacio aéreo totalmente automatizado y controlado. Más allá de sus diferencias conceptuales, ambas visiones manifiestan algunos componentes comunes. La necesidad de una detección y resolución de conflictos táctica (CD&R) automatizada en ruta es una de ellas. Aunque el tema de CD&R ha sido investigado a fondo en las últimas tres décadas, existen varios aspectos que no han sido tratados. En particular, las soluciones propuestas no exhiben cierto nivel de resiliencia, no proporcionan una identificación completa del tráfico circundante que podría verse afectado por la resolución del conflicto original, no permiten que los usuarios del espacio aéreo participen en la Resolución de Conflictos (CR) de manera realista (para lograr resoluciones eficientes), y no proporcionan los límites de tiempo de maniobra dentro de los cuales se pueden lograr resoluciones factibles. Este trabajo aborda los problemas anteriores de la siguiente manera. Se propone el uso de regiones espacio-temporales en lugar de trayectorias únicas para lograr cierto nivel de resiliencia en la CR. A través del método propuesto de “cuello de botella”, se cuantifica el nivel de resiliencia de las regiones. El “ecosistema aéreo”, la construcción formal que sirve para lograr la identificación completa del tráfico circundante relevante, se define formalmente, para dotar al CR de la propiedad de sistema completo. Se realiza un análisis del tráfico histórico y proyectado para identificar el tamaño de los ecosistemas aéreos formados. La detección de conflictos por parejas se utiliza para construir un ecosistema aéreo completo. Para tratar casos en los que coexisten varios conflictos pares en el tiempo con estrecha dependencia espacial, se amplía el concepto de “ecosistema aéreo” y se define el “ecosistema compuesto”. Además, se proponen algunas estrategias para mitigar la dependencia entre los conflictos por parejas dentro del ecosistema compuesto. Se realiza un análisis del tráfico histórico y sintético para identificar los ecosistemas compuestos que se forman y probar la efectividad de las estrategias de mitigación propuestas. Se adopta un mecanismo de negociación automatizado, a través del cual los usuarios del espacio aéreo pueden participar activamente en el proceso de CR. El mecanismo propuesto es descentralizado, proporciona la integridad del proceso de identificación y ofrece cierto nivel de resiliencia. De esta manera, los usuarios pueden participar en el CR con el propósito de aumentar la eficiencia sin revelar sus preferencias con respecto a sus costes y estrategias. El mecanismo de negociación automatizado se enriquece con un enfoque inicial para identificar los límites temporales del marco de resolución de conflictos por parejas de la aeronave delegada. Esta información se utiliza para determinar el límite temporal para el procedimiento de negociación automatizado.
Air Traffic Management (ATM) is envisioned to change drastically in order to accommodate the increasing demand. For the strategic time horizon, that spans up to 2050, two lines of thoughts are presented. One of them supports a move towards non-controlled airspace and the concept of free flight. The other one seeks to move towards the opposite direction, that of fully automated, controlled airspace. Beyond their conceptual differences, both visions manifest some common components. The necessity for automatic tactical, en-route Conflict Detection & Resolution (CD&R) is one of them. Although the topic of CD&R has been heavily investigated the last three decades, several issues have not been treated by the literature. In particular, the proposed solvers do not exhibit some level of resilience, they do not provide a complete identification of the surrounding traffic that might be affected by the resolution of the original conflict, they do not allow airspace users to be involved in the Conflict Resolution (CR) in a realistic way in order to achieve efficient resolutions, and they do not provide the maneuver time limits within which feasible resolutions can be achieved. This work addresses the above issues in the following manner. The use of spatio-temporal regions instead of unique trajectories is proposed in order to achieve some level of resilience in the CR. Through the proposed “bottleneck” method, the regions’ level of resilience is quantified. The so called “aerial ecosystem”, the formal construct that serves to achieve complete identification of the relevant surrounding traffic, is formally defined in order to extend the CR with the completeness property. An analysis of historical and projected traffic in order to identify the size of the formed aerial ecosystems is performed. Pairwise conflict detection is used to construct a full aerial ecosystem. In order to treat cases when several pairwise conflicts co-exist in time with tight spatial bounds, the “aerial ecosystem” concept is extended and the “compound ecosystem” is defined. Moreover, some strategies to mitigate the dependence between the pairwise conflicts within the compound ecosystem are proposed. An analysis of historical and synthetic traffic is performed in order to identify the compound ecosystems that are formed and test the effectivity of the proposed mitigation strategies. An automated negotiation mechanism, through which airspace users can actively participate in the CR process is adopted. The proposed mechanism is decentralized, provides completeness of the identification process, and offers some level of resilience. In such a manner, airlines can participate in the CR with the purpose of increasing efficiency without revealing their preferences regarding their costs and strategies. The automated negotiation mechanism is enriched by an initial approach to identify the temporal fences of the delegated aircraft pairwise conflict resolution framework. This information is used to determine the deadline for the automated negotiation procedure.
Monteiro, Fernando C. "Region-based spatial and temporal image segmentation." Doctoral thesis, Universidade do Porto, Faculdade de Engenharia, 2008. http://hdl.handle.net/10198/1835.
Full textClark, Angus Alistair. "Region classification for the interpretation of video sequences." Thesis, University of Bristol, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302167.
Full textBernasconi-Ladbon, Neda. "MRI of the parahippocampal region in temporal lobe epilepsy." Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=85081.
Full textIn clinical practice, the investigation and treatment of patients with epilepsy has been revolutionized by the advent of MRI, which has been demonstrated to be a reliable and accurate indicator of pathologic findings underlying epilepsy. Advances in image acquisition and processing techniques combined with detailed descriptions of anatomy and cytoarchitectonic borders of parahippocampal structures on histologic sections have created the basis for precise determination of the boundaries of these cortical areas on MRI. This dissertation presents a series of MRI studies aimed at assessing volume changes in vivo of the parahippocampal region, and further elucidating its role in the pathogenesis of TLE.
To accomplish this we developed a standardized MRI protocol to measure the volume of the parahippocampal region structures in vivo. In agreement with previous neuropathological studies (Meencke and Veith, 1991), our results showed that damage to the mesial temporal lobe involves not only the hippocampus and the amygdala, but also the parahippocampal region structures in patients with intractable TLE. Within the parahippocampal region, the entorhinal cortex was the most affected structure. We observed that the atrophy was more severe in the anterior portion of the mesial temporal lobe involving mostly the hippocampal head and body as well as the EC. This pattern of atrophy, characterized by an antero-posterior gradient of pathology, may be explained by a disruption of entorhinal-hippocampal connections.
To evaluate the clinical role of entorhinal cortex volumetry we studied groups of TLE patients with hippocampal atrophy and those with normal hippocampal volumes as well as patients with extra-temporal lobe epilepsy.
Entorhinal cortex volumetry could provide correct lateralization of the seizure focus in 73% of TLE patients with hippocampal atrophy. Entorhinal cortex atrophy seems to be specific to TLE, since we found no atrophy in other forms of epilepsy, including frontal lobe and primary generalized epilepsy. We subsequently demonstrated that entorhinal cortex atrophy ipsilateral to the seizure focus can be the only MRI sign of mesial temporal damage in 64% of patients with normal hippocampal volumes.
Cherrett, Robin Corey. "Observed and simulated temporal and spatial variations of gap outflow region." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Sep%5FCherrett.pdf.
Full textThesis Advisor(s): Qing Wang, Wendell A. Nuss. "September 2006." Includes bibliographical references (p. 61-62). Also available in print.
Karlsson, Linda S. "Spatio-Temporal Pre-Processing Methods for Region-of-Interest Video Coding." Licentiate thesis, Mid Sweden University, Department of Information Technology and Media, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-51.
Full textIn video transmission at low bit rates the challenge is to compress the video with a minimal reduction of the percieved quality. The compression can be adapted to knowledge of which regions in the video sequence are of most interest to the viewer. Region of interest (ROI) video coding uses this information to control the allocation of bits to the background and the ROI. The aim is to increase the quality in the ROI at the expense of the quality in the background. In order for this to occur the typical content of an ROI for a particular application is firstly determined and the actual detection is performed based on this information. The allocation of bits can then be controlled based on the result of the detection.
In this licenciate thesis existing methods to control bit allocation in ROI video coding are investigated. In particular pre-processing methods that are applied independently of the codec or standard. This makes it possible to apply the method directly to the video sequence without modifications to the codec. Three filters are proposed in this thesis based on previous approaches. The spatial filter that only modifies the background within a single frame and the temporal filter that uses information from the previous frame. These two filters are also combined into a spatio-temporal filter. The abilities of these filters to reduce the number of bits necessary to encode the background and to successfully re-allocate these to the ROI are investigated. In addition the computational compexities of the algorithms are analysed.
The theoretical analysis is verified by quantitative tests. These include measuring the quality using both the PSNR of the ROI and the border of the background, as well as subjective tests with human test subjects and an analysis of motion vector statistics.
The qualitative analysis shows that the spatio-temporal filter has a better coding efficiency than the other filters and it successfully re-allocates the bits from the foreground to the background. The spatio-temporal filter gives an improvement in average PSNR in the ROI of more than 1.32 dB or a reduction in bitrate of 31 % compared to the encoding of the original sequence. This result is similar to or slightly better than the spatial filter. However, the spatio-temporal filter has a better performance, since its computational complexity is lower than that of the spatial filter.
Ding, Yichen. "Mining Spatio-Temporal Reachable Regions over Massive Trajectory Data." Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-theses/211.
Full textPaduri, Avinash Reddy. "HRSB-Tree for Spatio-Temporal Aggregates over Moving Regions." Thesis, Southern Illinois University at Edwardsville, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=10844304.
Full textAggregate operations are valuable tools for data analysis in databases. For example, the traditional aggregates like sum, average, count, min and max enable powerful analysis over data in relational databases. Set operations like union, intersection and difference can be used to find aggregate values on spatial, temporal and spatiotemporal data. They take a set of regions, either static or moving, and return a single region. Though there were existing structures to find an aggregate value on spatiotemporal data, they are not efficient to query aggregates on moving regions. This paper proposes a structure that we can use to find different types of aggregates on moving regions.
Cicconi, Pierangela. "A spatio-temporal region-based video coding scheme for very-low bitrates /." Lausanne : EPFL, 1994. http://library.epfl.ch/theses/?nr=1261.
Full textBooks on the topic "Temporale, region"
Cascioli, Raffaella. Analisi temporale della mortalità per causa nella regione Campania. Roma: Istituto superiore di sanità, 1998.
Find full textSick, Henri, and Francis Veillon. Atlas of Slices of the Temporal Bone and Adjacent Region. Munich: J.F. Bergmann-Verlag, 1988. http://dx.doi.org/10.1007/978-3-642-80516-5.
Full textSep, Peter, and Marga Verheije. Groot en klein verzet: Temporele ordening in Nederland. [Amsterdam]: De Balie, 2004.
Find full textTudela, Juan Carlos Andreo. Inmigración extranjera y empresas de trabajo temporal en la Región de Murcia. Sevilla: Editorial Doble J, 2007.
Find full textTudela, Juan Carlos Andreo. Inmigración extranjera y empresas de trabajo temporal en la Región de Murcia. Sevilla: Editorial Doble J, 2007.
Find full textKhoo, Gaik Cheng, Thomas Barker, and Mary Ainslie, eds. Southeast Asia on Screen. NL Amsterdam: Amsterdam University Press, 2020. http://dx.doi.org/10.5117/9789462989344.
Full textBadiani, Reena. Temporary and permanent migration in six villages in the semi-arid tropics. Patancheru: International Crops Research Institute for the Semi-Arid Tropics, 2007.
Find full textservice), SpringerLink (Online, ed. Studies in Temporal Urbanism: The urbanTick Experiment. Dordrecht: Springer Science+Business Media B.V., 2011.
Find full textService, United States Forest. USDA Forest Service: Guide to temporary employment, 1994. [Fort Collins, Colo.?]: U.S. Dept. of Agriculture, Forest Service, Rocky Mountain Region, 1994.
Find full textBook chapters on the topic "Temporale, region"
Hickok, Gregory, and Kourosh Saberi. "Redefining the Functional Organization of the Planum Temporale Region: Space, Objects, and Sensory–Motor Integration." In The Human Auditory Cortex, 333–50. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-2314-0_12.
Full textPelphrey, Kevin A. "Superior Temporal Sulcus Region." In Encyclopedia of Autism Spectrum Disorders, 3040. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1698-3_584.
Full textPelphrey Harris, Kevin A. "Superior Temporal Sulcus Region." In Encyclopedia of Autism Spectrum Disorders, 4701. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-91280-6_584.
Full textCavallaro, Alexander, Franz Graf, Hans-Peter Kriegel, Matthias Schubert, and Marisa Thoma. "Region of Interest Queries in CT Scans." In Advances in Spatial and Temporal Databases, 56–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22922-0_5.
Full textCohn, Anthony G., Brandon Bennett, John Gooday, and Nicholas M. Gotts. "Representing and Reasoning with Qualitative Spatial Relations About Regions." In Spatial and Temporal Reasoning, 97–134. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-0-585-28322-7_4.
Full textGalmar, Eric, and Benoit Huet. "Graph-Based Spatio-temporal Region Extraction." In Lecture Notes in Computer Science, 236–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11867586_23.
Full textQian, Weihong. "Regional Convective Events." In Temporal Climatology and Anomalous Weather Analysis, 251–346. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3641-5_6.
Full textCheng, Tao, James Haworth, Berk Anbaroglu, Garavig Tanaksaranond, and Jiaqiu Wang. "Spatio-temporal Data Mining." In Handbook of Regional Science, 1–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-642-36203-3_68-1.
Full textCheng, Tao, James Haworth, Berk Anbaroglu, Garavig Tanaksaranond, and Jiaqiu Wang. "Spatio-temporal Data Mining." In Handbook of Regional Science, 1691–709. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-662-60723-7_68.
Full textCusick, Catherine G. "The Superior Temporal Polysensory Region in Monkeys." In Extrastriate Cortex in Primates, 435–68. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9625-4_10.
Full textConference papers on the topic "Temporale, region"
Dar, Mor, and Yael Moses. "Temporal Epipolar Regions." In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016. http://dx.doi.org/10.1109/cvpr.2016.137.
Full textFang, Zhijie, Weiqun Wang, Shixin Ren, Jiaxing Wang, Weiguo Shi, Xu Liang, Chen-Chen Fan, and Zeng-Guang Hou. "Learning Regional Attention Convolutional Neural Network for Motion Intention Recognition Based on EEG Data." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/218.
Full textVarkey, Dennis Antony, Biswabandan Panda, and Madhu Mutyam. "RCTP: Region Correlated Temporal Prefetcher." In 2017 IEEE 35th International Conference on Computer Design (ICCD). IEEE, 2017. http://dx.doi.org/10.1109/iccd.2017.20.
Full textMagueta, Marcos Paulo Bispo, and Denise Stringhini. "Métricas de redes complexas para caracterizar a escalabilidade de programas paralelos." In Escola Regional de Alto Desempenho de São Paulo. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/eradsp.2020.16882.
Full textDe Oliveira Jr., Marcos, and Gerson Cavalheiro. "Um estudo sobre estratégias para compactação de Séries Temporais para aplicações de IoT." In XXI Escola Regional de Alto Desempenho da Região Sul. Sociedade Brasileira de Computação - SBC, 2021. http://dx.doi.org/10.5753/eradrs.2021.14800.
Full textFerreira, Mateus Felipe, Francis Moreira, Marco Antonio Alves, Arthur Krause, and Paulo Cesar Santos. "Análise de desempenho das técnicas de vetorização, predicação e loads não temporais em processadores Skylake." In XXI Escola Regional de Alto Desempenho da Região Sul. Sociedade Brasileira de Computação - SBC, 2021. http://dx.doi.org/10.5753/eradrs.2021.14775.
Full textFauzi, Rendra, and Leni S. Heliani. "Temporal Gravity Gradient of South Kalimantan Region." In 2018 4th International Conference on Science and Technology (ICST). IEEE, 2018. http://dx.doi.org/10.1109/icstc.2018.8528641.
Full textGalasso, Fabio, Masahiro Iwasaki, Kunio Nobori, and Roberto Cipolla. "Spatio-temporal clustering of probabilistic region trajectories." In 2011 IEEE International Conference on Computer Vision (ICCV). IEEE, 2011. http://dx.doi.org/10.1109/iccv.2011.6126438.
Full textMcKenney, Mark, Roger Frye, Zachary Benchly, and Logan Maughan. "Temporal coverage aggregates over moving region streams." In SIGSPATIAL '14: 22nd SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2676552.2676555.
Full textLiu, Ruixin, Zhenyu Weng, Yuesheng Zhu, and Bairong Li. "Temporal Adaptive Alignment Network for Deep Video Inpainting." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/129.
Full textReports on the topic "Temporale, region"
Lane, L. S. Temporal-spatial evolution of Tertiary deformation, Beaufort Sea - Mackenzie Delta region. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2004. http://dx.doi.org/10.4095/215620.
Full textKwon, Jaymin, Yushin Ahn, and Steve Chung. Spatio-Temporal Analysis of the Roadside Transportation Related Air Quality (STARTRAQ) and Neighborhood Characterization. Mineta Transportation Institute, August 2021. http://dx.doi.org/10.31979/mti.2021.2010.
Full textDenHaan, Wouter. Temporary Shocks and Unavoidable Transistions to a High-Unemployment Regime. Cambridge, MA: National Bureau of Economic Research, November 2002. http://dx.doi.org/10.3386/w9349.
Full textCrowley, T. J., and G. R. North. Studies in regional climate sensitivity, predictability, and temporal response. Progress report, September 1992--February 1993. Office of Scientific and Technical Information (OSTI), February 1993. http://dx.doi.org/10.2172/10133885.
Full textBourgeois, J., D. Fisher, C. Zdanowicz, and J. Zheng. International Polar Year activities: spatial and temporal trends of climate and airborne contaminants in the Arctic region from snow and ice. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2012. http://dx.doi.org/10.4095/290195.
Full textBeck, Tanya, and Ping Wang. Morphodynamics of barrier-inlet systems in the context of regional sediment management, with case studies from West-Central Florida, USA. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41984.
Full textReyes, Julian, Jeb Williamson, and Emile Elias. Spatio-temporal analysis of Federal crop insurance cause of loss data: A roadmap for research and outreach effort. U.S. Department of Agriculture, April 2018. http://dx.doi.org/10.32747/2018.7202608.ch.
Full textWorkman, Austin, and Jay Clausen. Meteorological property and temporal variable effect on spatial semivariance of infrared thermography of soil surfaces for detection of foreign objects. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/41024.
Full textNabelek, John L., Jochen Braunmiller, Patrick W. Monigle, N. S. Carpenter, and W. S. Phillips. Source and Path Calibration in Regions of Poor Crustal Propagation Using Temporary, Large-Aperture, High-Resolution Seismic Arrays (Postprint). Annual Report 3. Fort Belvoir, VA: Defense Technical Information Center, June 2012. http://dx.doi.org/10.21236/ada565598.
Full textOver, Thomas, Riki Saito, Andrea Veilleux, Padraic O’Shea, Jennifer Sharpe, David Soong, and Audrey Ishii. Estimation of Peak Discharge Quantiles for Selected Annual Exceedance Probabilities in Northeastern Illinois. Illinois Center for Transportation, June 2016. http://dx.doi.org/10.36501/0197-9191/16-014.
Full text