Journal articles on the topic 'Tensile and Fracture Toughness'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Tensile and Fracture Toughness.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Parasuraman, Prabhuraj, Tushar Sonar, and Selvaraj Rajakumar. "Microstructure, tensile properties and fracture toughness of friction stir welded AA7075-T651 aluminium alloy joints." Materials Testing 64, no. 12 (2022): 1843–50. http://dx.doi.org/10.1515/mt-2022-0212.
Full textKubošová, Andrea, Miroslav Karlík, Petr Haušild, and J. Prahl. "Fracture Behaviour of Fe3Al and FeAl Type Iron Aluminides." Materials Science Forum 567-568 (December 2007): 349–52. http://dx.doi.org/10.4028/www.scientific.net/msf.567-568.349.
Full textHe, Rui, Longfei Cheng, Yidi Gao, Hao Cui, Yulong Li, and Jianhu Liu. "Fracture toughness of fibre failure modes in laminated composites under dynamic loading." Journal of Physics: Conference Series 2891, no. 16 (2024): 162001. https://doi.org/10.1088/1742-6596/2891/16/162001.
Full textMan, Ke, and Xiaoli Liu. "Dynamic Fracture Toughness and Dynamic Tensile Strength of the Rock from Different Depths of Beijing Datai Well." Advances in Civil Engineering 2018 (August 29, 2018): 1–8. http://dx.doi.org/10.1155/2018/2567438.
Full textPokluda, Jaroslav, Ivo Dlouhý, Marta Kianicová, Jan Čupera, Jana Horníková, and Pavel Šandera. "Temperature Dependence of Fracture Characteristics of Variously Heat-Treated Grades of Ultra-High-Strength Steel: Experimental and Modelling." Materials 14, no. 19 (2021): 5875. http://dx.doi.org/10.3390/ma14195875.
Full textWoo, Sung Choong. "Tensile Behavior and Fracture Toughness of Glass Fiber Reinforced Aluminum Laminates According to Fiber Layer Orientation." Key Engineering Materials 326-328 (December 2006): 1039–42. http://dx.doi.org/10.4028/www.scientific.net/kem.326-328.1039.
Full textDolatshahi, Alireza, and Hamed Molladavoodi. "PREDICTION OF ROCK TENSILE FRACTURE TOUGHNESS: HYBRID ANN-WOA MODEL APPROACH." Rudarsko-geološko-naftni zbornik 39, no. 3 (2024): 1–12. http://dx.doi.org/10.17794/rgn.2024.3.1.
Full textMäkelä, Petri, and Christer Fellers. "An analytic procedure for determination of fracture toughness of paper materials." Nordic Pulp & Paper Research Journal 27, no. 2 (2012): 352–60. http://dx.doi.org/10.3183/npprj-2012-27-02-p352-360.
Full textLee, Soo Hyun, Jink Wang Kim, Su Nam Kim, Sang Bong Cho, and Jon Do Yun. "Interfacial Fracture Toughness for Film on Substrate Determined by Indentation Method." Key Engineering Materials 345-346 (August 2007): 801–4. http://dx.doi.org/10.4028/www.scientific.net/kem.345-346.801.
Full textTschegg, Elmar K., and Subra Suresh. "Tensile Fracture Toughness Measurements in Ceramics." Journal of the American Ceramic Society 70, no. 3 (1987): C—41—C—43. http://dx.doi.org/10.1111/j.1151-2916.1987.tb04960.x.
Full textLiu, H., B. G. Falzon, G. Catalanotti, and W. Tan. "An experimental method to determine the intralaminar fracture toughness of high-strength carbon-fibre reinforced composite aerostructures." Aeronautical Journal 122, no. 1255 (2018): 1352–70. http://dx.doi.org/10.1017/aer.2018.78.
Full textGong, Shuang, Zhen Wang, Lei Zhou, and Wen Wang. "Experimental Investigation on the Tensile and Fracture Properties of Burst-Prone Coal under Quasistatic Condition." Shock and Vibration 2021 (February 26, 2021): 1–13. http://dx.doi.org/10.1155/2021/5593376.
Full textShum, D., M. N. Bassim, and M. R. Bayoumi. "Dynamic tensile fracture toughness evaluation using compact tension specimens." International Journal of Fracture 29, no. 1 (1985): R3—R10. http://dx.doi.org/10.1007/bf00020677.
Full textLu, Fang Yun, Xiao Feng Wang, Rong Chen, et al. "Comparison Investigation of Tensile Fracture Properties of Al Alloy at Different Dynamic Loadings." Key Engineering Materials 535-536 (January 2013): 156–59. http://dx.doi.org/10.4028/www.scientific.net/kem.535-536.156.
Full textLiang, Li, Pu Rong Jia, and Gui Qiong Jiao. "Interlaminar Fracture Toughness of Composite Laminate with Splicing Plies." Advanced Materials Research 194-196 (February 2011): 1697–702. http://dx.doi.org/10.4028/www.scientific.net/amr.194-196.1697.
Full textBozkurt, Fatih, and Eva Schmidová. "Fracture Toughness Evaluation of S355 Steel Using Circumferentially Notched Round Bars." Periodica Polytechnica Transportation Engineering 47, no. 2 (2018): 91–95. http://dx.doi.org/10.3311/pptr.11560.
Full textYoon, Han Ki, D. H. Kim, Yi Hyun Park, Yu Sik Kong, and Akira Kohyama. "Evaluation Strength and Fracture Toughness of Reduced Activation Ferritic Steel (JLF-1) for Fusion Reactor." Key Engineering Materials 261-263 (April 2004): 147–52. http://dx.doi.org/10.4028/www.scientific.net/kem.261-263.147.
Full textBahmani, A., and S. Nemati. "Fracture resistance of railway ballast rock under tensile and tear loads." Engineering Solid Mechanics 9, no. 3 (2021): 271–80. http://dx.doi.org/10.5267/j.esm.2021.3.003.
Full textLi, Lielie, Hekai Cao, Junfeng Guan, Shuanghua He, Lihua Niu, and Huaizhong Liu. "A Three-Parameter Weibull Distribution Method to Determine the Fracture Property of PMMA Bone Cement." Polymers 14, no. 17 (2022): 3589. http://dx.doi.org/10.3390/polym14173589.
Full textAlsaadi, Mohamad, and Ahmet Erkliğ. "Effect of sewage sludge ash filler on mode I and mode II interlaminar fracture toughness of S-glass/epoxy composites." Journal of Polymer Science and Engineering 5, no. 1 (2022): 431. https://doi.org/10.24294/jpse.v5i1.431.
Full textZhang, Bo Ming, and Yu Fen Wu. "Experiment Research for Fracture Toughness of PAN-Based Carbon Fibers." Key Engineering Materials 462-463 (January 2011): 1361–66. http://dx.doi.org/10.4028/www.scientific.net/kem.462-463.1361.
Full textShao, Yong Zheng, Kazuya Okubo, Toru Fujii, Ou Shibata, and Yukiko Fujita. "Study on Effect of Matrix Properties on Fatigue Damage Initiation of Woven Carbon Fabric Vinylester Composites." Applied Mechanics and Materials 541-542 (March 2014): 243–49. http://dx.doi.org/10.4028/www.scientific.net/amm.541-542.243.
Full textHarsha, H. M., and K. G. Satish. "Experimental analysis of fracture behavior in ESET jute-natural fiber hybrid composites under eccentric tension." Strength, Fracture and Complexity: An International Journal 18, no. 1 (2024): 3–17. https://doi.org/10.1177/15672069241302928.
Full textLin, Shiyun, Chenyun Peng, Fanghang Deng, and Dagang Yin. "Study on the tensile properties of 3D printing cell structure based on fractal theory." Journal of Physics: Conference Series 2783, no. 1 (2024): 012016. http://dx.doi.org/10.1088/1742-6596/2783/1/012016.
Full textYang, Xiao Long, Xiao Dong Tan, Yun Bo Xu, Zhi Ping Hu, Yong Mei Yu, and Di Wu. "Effect of Rolling Process on Impact Toughness in High Strength Low Carbon Bainitic Steel." Materials Science Forum 816 (April 2015): 743–49. http://dx.doi.org/10.4028/www.scientific.net/msf.816.743.
Full textGlaskova-Kuzmina, Tatjana, Leons Stankevics, Sergejs Tarasovs, et al. "Effect of Core–Shell Rubber Nanoparticles on the Mechanical Properties of Epoxy and Epoxy-Based CFRP." Materials 15, no. 21 (2022): 7502. http://dx.doi.org/10.3390/ma15217502.
Full textLi, Erqiang, Yanqing Wei, Zhanyang Chen, and Longfei Zhang. "Experimental and Numerical Investigations of Fracture Behavior for Transversely Isotropic Slate Using Semi-Circular Bend Method." Applied Sciences 13, no. 4 (2023): 2418. http://dx.doi.org/10.3390/app13042418.
Full textYuan, Zhi Shan, Zheng Lu, You Hua Xie, Xiu Liang Wu, Sheng Long Dai, and Chang Sheng Liu. "Mechanical Properties of a Novel High-Strength Aluminum-Lithium Alloy." Materials Science Forum 689 (June 2011): 385–89. http://dx.doi.org/10.4028/www.scientific.net/msf.689.385.
Full textLiu, Yongwei, Fuwen Chen, Guanglong Xu, Yuwen Cui, and Hui Chang. "Correlation between Microstructure and Mechanical Properties of Heat-Treated Ti–6Al–4V with Fe Alloying." Metals 10, no. 7 (2020): 854. http://dx.doi.org/10.3390/met10070854.
Full textBhattacharyya, Kushal. "A Comprehensive Study of Fracture Toughness Determination from Conventional and Unconventional Methods." Defence Science Journal 72, no. 2 (2022): 250–57. http://dx.doi.org/10.14429/dsj.72.16453.
Full textHlebová, Stanislava, and Ladislav Pešek. "Toughness of Ultra High Strength Steel Sheets ." Materials Science Forum 782 (April 2014): 57–60. http://dx.doi.org/10.4028/www.scientific.net/msf.782.57.
Full textDurmuş, Ali, Hakan Aydın, Mümin Tutar, Ali Bayram, and Kurtuluş Yiğit. "Effect of the microstructure on the notched tensile strength of as-cast and austempered ductile cast irons." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 226, no. 9 (2012): 2214–29. http://dx.doi.org/10.1177/0954406211433248.
Full textOgaili, Ahmed Ali Farhan, Ali Basem, Mohammed Salman Kadhim, et al. "The Effect of Chopped Carbon Fibers on the Mechanical Properties and Fracture Toughness of 3D-Printed PLA Parts: An Experimental and Simulation Study." Journal of Composites Science 8, no. 7 (2024): 273. http://dx.doi.org/10.3390/jcs8070273.
Full textKasapi, M. A., and J. M. Gosline. "Strain-rate-dependent mechanical properties of the equine hoof wall." Journal of Experimental Biology 199, no. 5 (1996): 1133–46. http://dx.doi.org/10.1242/jeb.199.5.1133.
Full textShimada, Yusuke, Yoichi Kayamori, Shohei Nishida, Mitsuhiro Matsuda, and Kazuki Takashima. "Micromechanical Characterisation of Microstructure in Weld Heat Affected Zone of Structural Steel." Key Engineering Materials 525-526 (November 2012): 585–88. http://dx.doi.org/10.4028/www.scientific.net/kem.525-526.585.
Full textWu, Ming Wei, Guo Jiun Shu, and Shih Hsien Chang. "The Impact Toughness and Fracture Behavior of Ni-Containing Powder Metal Steels." Advanced Materials Research 538-541 (June 2012): 1594–600. http://dx.doi.org/10.4028/www.scientific.net/amr.538-541.1594.
Full textKong, Byeong Seo, Ji Ho Shin, Changheui Jang, and Hyoung Chan Kim. "Measurement of Fracture Toughness of Pure Tungsten Using a Small-Sized Compact Tension Specimen." Materials 13, no. 1 (2020): 244. http://dx.doi.org/10.3390/ma13010244.
Full textBona, A. Della, K. J. Anusavice, and J. J. Mecholsky. "Apparent Interfacial Fracture Toughness of Resin/Ceramic Systems." Journal of Dental Research 85, no. 11 (2006): 1037–41. http://dx.doi.org/10.1177/154405910608501112.
Full textPoe, C. C. "A Parametric Study of Fracture Toughness of Fibrous Composite Materials." Journal of Offshore Mechanics and Arctic Engineering 111, no. 3 (1989): 161–69. http://dx.doi.org/10.1115/1.3257143.
Full textKumar, Ravi Ranjan, and P. K. Ghosh. "Fracture Mechanics of Conventional and Narrow Groove Pulse Current Gas Metal Arc Welds of HSLA Steel." Materials Science Forum 710 (January 2012): 451–56. http://dx.doi.org/10.4028/www.scientific.net/msf.710.451.
Full textZhou, Lingzhu, Yu Zheng, Linsheng Huo, Yuxiao Ye, Xiaolu Wang, and Gangbing Song. "Fracture behaviors of HVFA-SCC mixed with seawater and sea-sand under three-point bending." Advances in Structural Engineering 25, no. 4 (2022): 716–35. http://dx.doi.org/10.1177/13694332211027313.
Full textWu, Hai Jun, Kun Sun, Chao Guo, Feng Lei Huang, and Xiu Fang Ma. "Experimental Studies on Fracture Properties of 30CrMnSiNi2A Steel." Advanced Materials Research 875-877 (February 2014): 478–84. http://dx.doi.org/10.4028/www.scientific.net/amr.875-877.478.
Full textСмирнов, И. В. "Конструкционные прочностные параметры и разрушение ультрамелкозернистого титана Grade 4, полученного методом равноканального углового прессования РКУП-К". Журнал технической физики 89, № 4 (2019): 541. http://dx.doi.org/10.21883/jtf.2019.04.47309.266-18.
Full textKu, H., W. Xiang, and N. Pattarachaiyakoop. "Mathematical Modeling of the Fracture Toughness of Phenol Formaldehyde Composites Reinforced with E-Spheres." Advanced Materials Research 79-82 (August 2009): 1165–68. http://dx.doi.org/10.4028/www.scientific.net/amr.79-82.1165.
Full textAchla, Saurindra Nath Maiti та Josemon Jacob. "Post-yield fracture correlations to morphological and micromechanical response of poly(ε-caprolactone)-based biocomposites". Journal of Thermoplastic Composite Materials 31, № 5 (2017): 575–97. http://dx.doi.org/10.1177/0892705717713242.
Full textFeng, Gan, Xiao-chuan Wang, Yong Kang, Shi-gang Luo, and Yao-qing Hu. "Effects of Temperature on the Relationship between Mode-I Fracture Toughness and Tensile Strength of Rock." Applied Sciences 9, no. 7 (2019): 1326. http://dx.doi.org/10.3390/app9071326.
Full textLi, Xiangyu, Fugang Li, Minzu Liang, Kefan Zhang, and Zhandong Tian. "Research on Dynamic Constitutive Model and Fracture Characteristics of Two High Strength Steels." Journal of Physics: Conference Series 2168, no. 1 (2022): 012016. http://dx.doi.org/10.1088/1742-6596/2168/1/012016.
Full textKwon, Woong, Minwoo Han, Jongwon Kim, and Euigyung Jeong. "Comparative Study on Toughening Effect of PTS and PTK in Various Epoxy Resins." Polymers 13, no. 4 (2021): 518. http://dx.doi.org/10.3390/polym13040518.
Full textAbu-Shanab, O. L., C. P. Chang, and M. D. Soucek. "Polyphosphazene Toughened PMR-type Thermosets." High Performance Polymers 8, no. 3 (1996): 455–73. http://dx.doi.org/10.1088/0954-0083/8/3/010.
Full textRay, Kalyan Kumar, and R. N. Jha. "Probabilistic Fracture Resistance of a Forged Quality Medium Carbon Alloy Steel." Key Engineering Materials 488-489 (September 2011): 53–56. http://dx.doi.org/10.4028/www.scientific.net/kem.488-489.53.
Full text