Academic literature on the topic 'Tensile test on textile reinforced concrete specimen'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Tensile test on textile reinforced concrete specimen.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Tensile test on textile reinforced concrete specimen"
Kim, Hyeong-Yeol, Young-Jun You, and Gum-Sung Ryu. "Reinforced Concrete Slabs Strengthened with Lap-Spliced Carbon TRC System." Materials 14, no. 12 (June 17, 2021): 3340. http://dx.doi.org/10.3390/ma14123340.
Full textVlach, Tomáš, Lenka Laiblová, Jakub Řepka, Zuzana Jirkalová, and Petr Hájek. "EXPERIMENTAL VERIFICATION OF IMPREGNATED TEXTILE REINFORCEMENT SPLICING BY OVERLAPPING." Acta Polytechnica CTU Proceedings 22 (July 25, 2019): 128–32. http://dx.doi.org/10.14311/app.2019.22.0128.
Full textMészöly, Tamás, Sandra Ofner, Norbert Randl, and Zhiping Luo. "Effect of Combining Fiber and Textile Reinforcement on the Flexural Behavior of UHPC Plates." Advances in Materials Science and Engineering 2020 (September 29, 2020): 1–8. http://dx.doi.org/10.1155/2020/9891619.
Full textKim, Hyeong-Yeol, Young-Jun You, Gum-Sung Ryu, Kyung-Taek Koh, Gi-Hong Ahn, and Se-Hoon Kang. "Flexural Strengthening of Concrete Slab-Type Elements with Textile Reinforced Concrete." Materials 13, no. 10 (May 13, 2020): 2246. http://dx.doi.org/10.3390/ma13102246.
Full textMachovec, Jan, Filip Vogel, and Petr Konvalinka. "The Experimental Testing of the Tensile Strength of the Steel Fibre Reinforced Cement Matrix." Materials Science Forum 824 (July 2015): 197–200. http://dx.doi.org/10.4028/www.scientific.net/msf.824.197.
Full textYou, Young-Jun, Hyeong-Yeol Kim, Gum-Sung Ryu, Kyung-Taek Koh, Gi-Hong Ahn, and Se-Hoon Kang. "Strengthening of Concrete Element with Precast Textile Reinforced Concrete Panel and Grouting Material." Materials 13, no. 17 (September 1, 2020): 3856. http://dx.doi.org/10.3390/ma13173856.
Full textYin, Shiping, Bo Wang, Fei Wang, and Shilang Xu. "Bond investigation of hybrid textile with self-compacting fine-grain concrete." Journal of Industrial Textiles 46, no. 8 (January 28, 2016): 1616–32. http://dx.doi.org/10.1177/1528083716629137.
Full textŘepka, Jakub, Tomáš Vlach, Diana Mariaková, Zuzana Jirkalová, and Petr Hájek. "Integrated Anchorage of Thin Façade Panels Made of Textile Reinforced Concrete." Solid State Phenomena 309 (August 2020): 57–61. http://dx.doi.org/10.4028/www.scientific.net/ssp.309.57.
Full textBittner, Tomáš, Petr Bouška, Michaela Kostelecká, Šárka Nenadálová, Milan Rydval, and Miroslav Vokáč. "Determination of Mechanical Properties of Non-Conventional Reinforcement." Key Engineering Materials 662 (September 2015): 249–52. http://dx.doi.org/10.4028/www.scientific.net/kem.662.249.
Full textKim, Hyeong-Yeol, Young-Jun You, Gum-Sung Ryu, Gi-Hong Ahn, and Kyung-Taek Koh. "Concrete Slab-Type Elements Strengthened with Cast-in-Place Carbon Textile Reinforced Concrete System." Materials 14, no. 6 (March 16, 2021): 1437. http://dx.doi.org/10.3390/ma14061437.
Full textDissertations / Theses on the topic "Tensile test on textile reinforced concrete specimen"
Hartig, Jens. "Numerical investigations on the uniaxial tensile behaviour of Textile Reinforced Concrete." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-66614.
Full textDie vorliegende Arbeit beschäftigt sich mit Untersuchungen zum einaxialen Zugtragverhalten von Textilbeton. Textilbeton ist ein Verbundwerkstoff bestehend aus einer Matrix aus Feinbeton und einer Bewehrung aus Multifilamentgarnen aus Hochleistungsfasern, welche zu textilen Strukturen verarbeitet sind. Die Untersuchungen konzentrieren sich auf Bewehrungen aus alkali-resistentem Glas. Das Tragverhalten des Verbundwerkstoffs ist komplex, was aus der Heterogenität der Matrix und der Garne sowie der unvollständigen Durchdringung der Garne mit Matrix resultiert. Das Hauptziel der Arbeit ist die theoretische Untersuchung von Effekten und Mechanismen innerhalb des Lastabtragverhaltens von Textilbeton, welche nicht vollständig anhand verfügbarer experimenteller Ergebnisse erklärt werden können. Das entsprechende Modell zur Beschreibung des Zugtragverhaltens von Textilbeton soll verschiedene experimentelle Versuchstypen mit einem einheitlichen Modell abbilden können. Unter Vernachlässigung von Querdehneffekten wurde ein eindimensionales Modell entwickelt und im Rahmen der Finite-Elemente-Methode numerisch implementiert. Es werden jedoch auch Lastabtragmechanismen in Querrichtung durch eine Unterteilung der Bewehrungsgarne in sogenannte Segmente berücksichtigt. Das Modell enthält zwei Typen von finiten Elementen: Stabelemente und Verbundelemente. In Längsrichtung werden Stabelemente kettenförmig angeordnet, um das Tragverhalten von Matrix und Bewehrung abzubilden. In Querrichtung sind die Stabelementketten mit Verbundelementen gekoppelt. Das Modell erhält seine Komplexität hauptsächlich aus Nichtlinearitäten in der Materialbeschreibung, z.B. durch begrenzte Zugfestigkeiten von Matrix und Bewehrung, Zugentfestigung der Matrix, Welligkeit der Bewehrung und nichtlineare Verbundgesetze. Neben einer deterministischen Beschreibung des Materialverhaltens beinhaltet das Modell auch eine stochastische Beschreibung auf Grundlage eines Zufallsfeldansatzes. Mit dem Modell können Spannungsverteilungen im Verbundwerkstoff und Eigenschaften der Betonrissentwicklung, z.B. in Form von Rissbreiten und Rissabständen untersucht werden, was in dieser Kombination nur mit wenigen der existierenden Modelle für Textilbeton möglich ist. In vielen der vorhandenen Modelle sind diese Eigenschaften Eingangsgrößen für die Berechnungen und keine Ergebnisse. Darüber hinaus kann anhand des Modells auch das sukzessive Versagen der Bewehrungsgarne studiert werden. Das Modell wurde auf drei verschiedene Versuchstypen angewendet: den Filamentauszugversuch, den Garnauszugversuch und Dehnkörperversuche. Die Berechnungsergebnisse zu den Filamentauszugversuchen zeigten eine gute Übereinstimmung mit experimentellen Resultaten. Zudem wurden Parameterstudien durchgeführt, um Einflüsse aus Geometrieeigenschaften wie der eingebetteten und freien Filamentlänge sowie Materialeigenschaften wie dem Verbund zwischen Matrix und Filament zu untersuchen. Die Berechnungsergebnisse zum Garnauszugversuch demonstrierten die Anwendbarkeit des Modells auf diesen Versuchstyp. Es wurde gezeigt, dass für eine realitätsnahe Abbildung des Versagensverhaltens der Bewehrungsgarne eine relativ feine Auflösung der Bewehrung notwendig ist. Die Berechnungen lieferten die Verteilung von Versagenspositionen in der Bewehrung und die Entwicklung der Degradation der Garne im Belastungsverlauf. Ein Hauptziel der Arbeit war die Untersuchung von Effekten im Zugtragverhalten von Textilbeton, die bisher nicht durch experimentelle Untersuchungen erklärt werden konnten. Daher wurde eine Vielzahl von Parameterstudien zu Dehnkörpern mit mehrfacher Matrixrissbildung, welche das Zugtragverhalten von Textilbeton ähnlich praktischen Anwendungen abbilden, durchgeführt. Die Berechnungsergebnisse zeigten, dass der experimentell beobachtete dreigeteilte Verlauf der Spannungs-Dehnungs-Beziehung von Textilbeton bestehend aus dem ungerissenen Zustand, dem Zustand der Matrixrissbildung und dem Zustand der abgeschlossenen Rissbildung vom Modell wiedergegeben wird. Die beste Übereinstimmung zwischen berechneten und experimentellen Ergebnissen ergab sich unter Einbeziehung von Streuungen in den Materialeigenschaften der Matrix, der Zugentfestigung der Matrix und der Welligkeit der Bewehrung
Chudoba, Rostislav, Martin Konrad, Markus Schleser, Konstantin Meskouris, and Uwe Reisgen. "Parametric study of tensile response of TRC specimens reinforced with epoxy-penetrated multi-filament yarns." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1244043793029-57511.
Full textSickert, Jan-Uwe, Katrin Schwiteilo, and Frank Jesse. "Statistische Auswertung der Bruchspannung einaxialer Zugversuche an Textilbeton - Vorschläge für Teilsicherheitsbeiwerte." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-77867.
Full textIn the framework of a comprehensive experimental program the ultimate strength of textile reinforced concrete has been determined under consideration of uniaxial tensile load. In result varying data are available which indicate a non-deterministic (uncertain) strength. The experimental results provide a moderate basis for statistical evaluations and the quantification of uncertainty. Furthermore, manual calculation in structural design requires a certain safety distance. For this task, partial safety factors have been defined and incorporated in the design codes to ensure a predefined safety level. In this context, this paper gives suggestions for the definition of partial safety factors for textile reinforced concrete with AR glass and carbon reinforcement
Hartig, Jens. "Numerical investigations on the uniaxial tensile behaviour of Textile Reinforced Concrete." Doctoral thesis, 2010. https://tud.qucosa.de/id/qucosa%3A25532.
Full textDie vorliegende Arbeit beschäftigt sich mit Untersuchungen zum einaxialen Zugtragverhalten von Textilbeton. Textilbeton ist ein Verbundwerkstoff bestehend aus einer Matrix aus Feinbeton und einer Bewehrung aus Multifilamentgarnen aus Hochleistungsfasern, welche zu textilen Strukturen verarbeitet sind. Die Untersuchungen konzentrieren sich auf Bewehrungen aus alkali-resistentem Glas. Das Tragverhalten des Verbundwerkstoffs ist komplex, was aus der Heterogenität der Matrix und der Garne sowie der unvollständigen Durchdringung der Garne mit Matrix resultiert. Das Hauptziel der Arbeit ist die theoretische Untersuchung von Effekten und Mechanismen innerhalb des Lastabtragverhaltens von Textilbeton, welche nicht vollständig anhand verfügbarer experimenteller Ergebnisse erklärt werden können. Das entsprechende Modell zur Beschreibung des Zugtragverhaltens von Textilbeton soll verschiedene experimentelle Versuchstypen mit einem einheitlichen Modell abbilden können. Unter Vernachlässigung von Querdehneffekten wurde ein eindimensionales Modell entwickelt und im Rahmen der Finite-Elemente-Methode numerisch implementiert. Es werden jedoch auch Lastabtragmechanismen in Querrichtung durch eine Unterteilung der Bewehrungsgarne in sogenannte Segmente berücksichtigt. Das Modell enthält zwei Typen von finiten Elementen: Stabelemente und Verbundelemente. In Längsrichtung werden Stabelemente kettenförmig angeordnet, um das Tragverhalten von Matrix und Bewehrung abzubilden. In Querrichtung sind die Stabelementketten mit Verbundelementen gekoppelt. Das Modell erhält seine Komplexität hauptsächlich aus Nichtlinearitäten in der Materialbeschreibung, z.B. durch begrenzte Zugfestigkeiten von Matrix und Bewehrung, Zugentfestigung der Matrix, Welligkeit der Bewehrung und nichtlineare Verbundgesetze. Neben einer deterministischen Beschreibung des Materialverhaltens beinhaltet das Modell auch eine stochastische Beschreibung auf Grundlage eines Zufallsfeldansatzes. Mit dem Modell können Spannungsverteilungen im Verbundwerkstoff und Eigenschaften der Betonrissentwicklung, z.B. in Form von Rissbreiten und Rissabständen untersucht werden, was in dieser Kombination nur mit wenigen der existierenden Modelle für Textilbeton möglich ist. In vielen der vorhandenen Modelle sind diese Eigenschaften Eingangsgrößen für die Berechnungen und keine Ergebnisse. Darüber hinaus kann anhand des Modells auch das sukzessive Versagen der Bewehrungsgarne studiert werden. Das Modell wurde auf drei verschiedene Versuchstypen angewendet: den Filamentauszugversuch, den Garnauszugversuch und Dehnkörperversuche. Die Berechnungsergebnisse zu den Filamentauszugversuchen zeigten eine gute Übereinstimmung mit experimentellen Resultaten. Zudem wurden Parameterstudien durchgeführt, um Einflüsse aus Geometrieeigenschaften wie der eingebetteten und freien Filamentlänge sowie Materialeigenschaften wie dem Verbund zwischen Matrix und Filament zu untersuchen. Die Berechnungsergebnisse zum Garnauszugversuch demonstrierten die Anwendbarkeit des Modells auf diesen Versuchstyp. Es wurde gezeigt, dass für eine realitätsnahe Abbildung des Versagensverhaltens der Bewehrungsgarne eine relativ feine Auflösung der Bewehrung notwendig ist. Die Berechnungen lieferten die Verteilung von Versagenspositionen in der Bewehrung und die Entwicklung der Degradation der Garne im Belastungsverlauf. Ein Hauptziel der Arbeit war die Untersuchung von Effekten im Zugtragverhalten von Textilbeton, die bisher nicht durch experimentelle Untersuchungen erklärt werden konnten. Daher wurde eine Vielzahl von Parameterstudien zu Dehnkörpern mit mehrfacher Matrixrissbildung, welche das Zugtragverhalten von Textilbeton ähnlich praktischen Anwendungen abbilden, durchgeführt. Die Berechnungsergebnisse zeigten, dass der experimentell beobachtete dreigeteilte Verlauf der Spannungs-Dehnungs-Beziehung von Textilbeton bestehend aus dem ungerissenen Zustand, dem Zustand der Matrixrissbildung und dem Zustand der abgeschlossenen Rissbildung vom Modell wiedergegeben wird. Die beste Übereinstimmung zwischen berechneten und experimentellen Ergebnissen ergab sich unter Einbeziehung von Streuungen in den Materialeigenschaften der Matrix, der Zugentfestigung der Matrix und der Welligkeit der Bewehrung.
Conference papers on the topic "Tensile test on textile reinforced concrete specimen"
Jazaei, Robabeh, Moses Karakouzian, Brendan O’Toole, Jaeyun Moon, and Samad Gharehdaghi. "Failure Mechanism of Cementitious Nanocomposites Reinforced by Multi-Walled and Single-Walled Carbon Nanotubes Under Splitting Tensile Test." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88512.
Full textKobayashi, Satoshi, and Toshiko Osada. "Experimental and Analytical Resin Impregnation Characterization in Carbon Fiber Reinforced Thermoplastic Composites." In JSME 2020 Conference on Leading Edge Manufacturing/Materials and Processing. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/lemp2020-8627.
Full text