Academic literature on the topic 'Teorie chaosu'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Teorie chaosu.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Teorie chaosu"
Siemieniuk, Nina, and Tomasz Siemieniuk. "Deterministic chaos theory and decisions of stock exchange investors." Zeszyty Naukowe Uniwersytetu Szczecińskiego Finanse, Rynki Finansowe, Ubezpieczenia 2015, no. 74/1 (September 30, 2015): 181–92. http://dx.doi.org/10.18276/frfu.2015.74/1-16.
Full textZEUG-ŻEBRO, Katarzyna, and Monika MIŚKIEWICZ-NAWROCKA. "Construction of optimal portfolio based on selected characteristics of chaos theory." Scientific Papers of Silesian University of Technology. Organization and Management Series 2017, no. 113 (2017): 547–61. http://dx.doi.org/10.29119/1641-3466.2017.113.43.
Full textSiemieniuk, Nina, Łukasz Siemieniuk, and Tomasz Siemieniuk. "Wybrane aspekty wykorzystania teorii chaosu do wspierania decyzji finansowych." Zeszyty Naukowe SGGW, Polityki Europejskie, Finanse i Marketing, no. 19(68) (July 1, 2018): 237–47. http://dx.doi.org/10.22630/pefim.2018.19.68.20.
Full textWenta, Kazimierz. "Applications of chaos theory in the discussion on education as path to happiness." Podstawy Edukacji 8 (2015): 35–47. http://dx.doi.org/10.16926/pe.2015.08.03.
Full textJaskulska, Sylwia. "Evaluating pupils’ conduct with marks. School obsession with order in the light of the mathematical chaos theory." Podstawy Edukacji 8 (2015): 187–97. http://dx.doi.org/10.16926/pe.2015.08.14.
Full textKRUCZEK, Zygmunt, and Adam R. SZROMEK. "An attempt to use the TALC model and chaos theory in description of development of the carpathian Żegiestów SPA." Scientific Papers of Silesian University of Technology. Organization and Management Series 2017, no. 102 (2017): 179–90. http://dx.doi.org/10.29119/1641-3466.2017.102.15.
Full textBecla, Agnieszka, and Stanisław Czaja. "Zanik funkcji miejskich w wybranych ośrodkach Dolnego Śląska – przyczyny i konsekwencje z perspektywy chaosu deterministycznego." Studia Miejskie 12 (October 28, 2020): 79–93. http://dx.doi.org/10.25167/sm.2378.
Full textSyarifudin, Amir, and Indah Febriani. "Sistem Hukum dan Teori Hukum Chaos." Hasanuddin Law Review 1, no. 2 (August 26, 2015): 296. http://dx.doi.org/10.20956/halrev.v1i2.85.
Full textSyarifudin, Amir, and Indah Febriani. "Sistem Hukum dan Teori Hukum Chaos." Hasanuddin Law Review 1, no. 2 (August 26, 2015): 296. http://dx.doi.org/10.20956/halrev.v1n2.85.
Full textVieira, Ernesto Jose, Henrique Cordeiro Martins, and Carlos Alberto Gonçalves. "APPLICABILITY OF CHAOS THEORY IN ORGANIZATIONS." Nucleus 11, no. 2 (October 30, 2014): 171–86. http://dx.doi.org/10.3738/1982.2278.1098.
Full textDissertations / Theses on the topic "Teorie chaosu"
Loukotková, Veronika. "Aplikace teorie chaosu na Elliottovy vlny." Master's thesis, Vysoké učení technické v Brně. Ústav soudního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-232670.
Full textHakl, Vilém. "Tektonika artificiálního chaosu neboli dramaturgie děl napodobujících ch aos aneb strašlivá masturbační fantasie Paridova." Master's thesis, Akademie múzických umění v Praze.Filmová a televizní fakulta. Knihovna, 2012. http://www.nusl.cz/ntk/nusl-155994.
Full textVícha, Tomáš. "PREDIKCE CEN ROPY PRO POTREBY FIREM ANGAŽOVANÝCH V ENERGETICKY NÁROCNÝCH VÝROBÁCH." Doctoral thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2007. http://www.nusl.cz/ntk/nusl-233700.
Full textPekárek, Jan. "Analýza a predikce vývoje devizových trhů pomocí chaotických atraktorů a neuronových sítí." Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2014. http://www.nusl.cz/ntk/nusl-224706.
Full textBrnka, Radim. "Využití umělé inteligence na kapitálových trzích." Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2012. http://www.nusl.cz/ntk/nusl-223594.
Full textVogelová, Tereza. "Chaos." Master's thesis, Vysoké učení technické v Brně. Fakulta výtvarných umění, 2012. http://www.nusl.cz/ntk/nusl-232326.
Full textHakl, Vilém. "Chaos noir." Doctoral thesis, Akademie múzických umění v Praze.Filmová a televizní fakulta. Knihovna, 2016. http://www.nusl.cz/ntk/nusl-253671.
Full textNascimento, Roberto Venegeroles. "Teoria cinética de mapas hamiltonianos." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-29022008-115433/.
Full textThis work consists in the study of the transport properties of chaotic Hamiltonian systems by using projection operator techniques. Such systems can exhibit deterministic diffusion and display an approach to equilibrium. We show that this diffusive behavior can be viewd as a spectral property of the associated Perron-Frobenius operator. In particular, the leading Pollicott-Ruelle resonance is calculated analytically for a general class of two-dimensional area-preserving maps. Its wavenumber dependence determines the normal transport coefficients. We calculate a general exact formula for the diffusion coefficient, derived without any high stochasticity approximation and a new effect emerges: the angular evolution can induce fast or slow modes of diffusion even in the high stochasticity regime. The non-Gaussian aspects of the chaotic transport are also investigated for this systems. This study is done by means of a relationship between kurtosis and diffusion coefficient and fourth order Burnett coefficient, which are calculated analytically. A characteristic time scale which delimits the Markovian and Gaussian regimes for the density function was established. Despite the accelerator modes, whose kinetics properties are anomalous, all theoretical results are in excellent agreement with the numerical simulations
Woitek, M. (Marcio). "Caos e termalização na teoria de Yang-Mills com quebra espontânea de simetria /." São Paulo :, 2011. http://hdl.handle.net/11449/92037.
Full textBanca: Iberê Luiz Caldas
Banca: Felipe Barbedo Rizzato
Resumo: Uma das características mais importantes das teorias de gauge não-Abelianas é a não-linearidade das equações de campo clássicas. Mostra-se no contexto da teoria de Yang-Mills que essa característica pode fazer com que o campo de gauge apresente comportamento caótico. Isso pode acontecer mesmo quando estivermos considerando a dinâmica do campo na ausência de fontes, isto é, o vácuo da teoria de Yang-Mills. Discutimos a relação entre os comportamentos caótico e ergódico. Em seguida, introduzimos a formulação de Berdichevsky da Mecânica Estatística Clássica para sistemas dinâmicos Hamiltonianos que são ergódicos e possuem poucos graus de liberdade. A Mecânica Estatística de Berdichevsky é usada para estudar a situação mais simples numa teoria de gauge não-Abeliana onde as variáveis de campo são caóticas e o espaço de fase correspondente tem a propriedade geométrica necessária. Mostramos que, para os propósitos desse estudo, um par de campos escalares complexos deve ser incluído no problema. Mais precisamente, analisamos o modelo de Higgs não-Abeliano; a Lagrangiana da teoria considerada possui uma simetria SU(2). A transição de uma descrição dinâmica do sistema de YangMills-Higgs (fora do equilíbrio termodinâmico) para uma descrição termodinâmica (quando ele atingiu o equilíbrio) é investigada numericamente. Mostra-se que depois de um tempo suficientemente longo as soluções numéricas se comportam de tal maneira que o sistema pode ser descrito de um jeito mais simples através de grandezas como a temperatura, calculadas de acordo com as prescriçõees da Mecânica Estatística de equilíbrio. Estas são previstas analiticamente para comparção com os resultados numéricos... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: One of the most important features of non-Abelian gauge theories is the non-linearity of the classical field equations. In the context of Yang-Mills theory it is shown that this feature can cause the gauge field to show chaotic behavior. That can happen even when we are considering the field dynamics in the absence of sources, i.e., the vacuum of the Yang-Mills theory. We discuss the connection between chaotic and ergodic behaviors. Then we introduce Berdichevsky's formulation of Classical Statistical Mechanics for Hamiltonian dynamical systems that are both ergodic and low-dimensional. Berdichevsky's theory of Statistical Mechanics is used to study the simplest situation in a non-Abelian gauge theory where the field variables are chaotic and the corresponding phase space has the necessary geometric property. We show that, for the purposes of this study, a pair of complex scalar fields must be introduced in the problem. More precisely, we analyse the so-called non-Abelian Higgs model; the Lagrangian of the theory we are considering has a SU(2) symmetry. The transition from a non-equilibrium dynamical description of the Yang-Mills-Higgs system to a thermodynamical description when it reaches equilibrium is numerically investigated. It is shown that after a sufficiently long time the numerical solutions behave in such a manner that the system can be described by quantities like the temperature, determined in accordance with the prescriptions of equilibrium Statistical Mechanics. These are predicted analytically for comparison with the numerical results. It is verified that there is agreement between analytical and numerical predictions so that the thermalization of the Yang-Mills-Higgs system can be explained with the aid of Berdichevsky's Statistical Mechanics. A dynamical approach to the study... (Complete abstract click electronic access below)
Mestre
Woitek, Junior Marcio [UNESP]. "Caos e termalização na teoria de Yang-Mills com quebra espontânea de simetria." Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/92037.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Uma das características mais importantes das teorias de gauge não-Abelianas é a não-linearidade das equações de campo clássicas. Mostra-se no contexto da teoria de Yang-Mills que essa característica pode fazer com que o campo de gauge apresente comportamento caótico. Isso pode acontecer mesmo quando estivermos considerando a dinâmica do campo na ausência de fontes, isto é, o vácuo da teoria de Yang-Mills. Discutimos a relação entre os comportamentos caótico e ergódico. Em seguida, introduzimos a formulação de Berdichevsky da Mecânica Estatística Clássica para sistemas dinâmicos Hamiltonianos que são ergódicos e possuem poucos graus de liberdade. A Mecânica Estatística de Berdichevsky é usada para estudar a situação mais simples numa teoria de gauge não-Abeliana onde as variáveis de campo são caóticas e o espaço de fase correspondente tem a propriedade geométrica necessária. Mostramos que, para os propósitos desse estudo, um par de campos escalares complexos deve ser incluído no problema. Mais precisamente, analisamos o modelo de Higgs não-Abeliano; a Lagrangiana da teoria considerada possui uma simetria SU(2). A transição de uma descrição dinâmica do sistema de YangMills-Higgs (fora do equilíbrio termodinâmico) para uma descrição termodinâmica (quando ele atingiu o equilíbrio) é investigada numericamente. Mostra-se que depois de um tempo suficientemente longo as soluções numéricas se comportam de tal maneira que o sistema pode ser descrito de um jeito mais simples através de grandezas como a temperatura, calculadas de acordo com as prescriçõees da Mecânica Estatística de equilíbrio. Estas são previstas analiticamente para comparção com os resultados numéricos...
One of the most important features of non-Abelian gauge theories is the non-linearity of the classical field equations. In the context of Yang-Mills theory it is shown that this feature can cause the gauge field to show chaotic behavior. That can happen even when we are considering the field dynamics in the absence of sources, i.e., the vacuum of the Yang-Mills theory. We discuss the connection between chaotic and ergodic behaviors. Then we introduce Berdichevsky’s formulation of Classical Statistical Mechanics for Hamiltonian dynamical systems that are both ergodic and low-dimensional. Berdichevsky’s theory of Statistical Mechanics is used to study the simplest situation in a non-Abelian gauge theory where the field variables are chaotic and the corresponding phase space has the necessary geometric property. We show that, for the purposes of this study, a pair of complex scalar fields must be introduced in the problem. More precisely, we analyse the so-called non-Abelian Higgs model; the Lagrangian of the theory we are considering has a SU(2) symmetry. The transition from a non-equilibrium dynamical description of the Yang-Mills-Higgs system to a thermodynamical description when it reaches equilibrium is numerically investigated. It is shown that after a sufficiently long time the numerical solutions behave in such a manner that the system can be described by quantities like the temperature, determined in accordance with the prescriptions of equilibrium Statistical Mechanics. These are predicted analytically for comparison with the numerical results. It is verified that there is agreement between analytical and numerical predictions so that the thermalization of the Yang-Mills-Higgs system can be explained with the aid of Berdichevsky’s Statistical Mechanics. A dynamical approach to the study... (Complete abstract click electronic access below)
Books on the topic "Teorie chaosu"
Moon, Francis C. Haotic eskie kolebania: Vvodnyj kurs dla nauc nyh rabotnikov i inz enerov. Moskva: Izdatel'stvo "Mir", 1990.
Find full textDemenko, B. V. Katehorii︠a︡ chasu v muzychniĭ naut︠s︡i: Teoriï spet︠s︡yfikat︠s︡iĭ. Kyïv: Kyïvsʹkyĭ derz︠h︡. in-t kulʹtury, 1996.
Find full textKordian, Bakuła, and Heck Dorota 1962-, eds. Efekt motyla: Humaniści wobec teorii chaosu. Wrocław: Wydawn. Uniwersytetu Wrocławskiego, 2006.
Find full textKordian, Bakuła, and Heck Dorota 1962-, eds. Efekt motyla: Humaniści wobec teorii chaosu. Wrocław: Wydawn. Uniwersytetu Wrocławskiego, 2006.
Find full textEfekt motyla: Humaniści wobec teorii chaosu. Wrocław: Wydawn. Uniwersytetu Wrocławskiego, 2006.
Find full textElskens, Yves, and Dominique Escande. Microscopic Dynamics of Plasmas & Chaos (Series in Plasma Physics). Taylor & Francis, 2002.
Find full textCarbon, Eduardo Posse. La Teoria Del Caos/ Chaos Theory: Caprichosas Leyes Del Azar? Whimsical Rules of Azar? (Compendios / Synopsis). Longseller, 2001.
Find full text(Editor), J. Hogan, A. R. Krauskopf (Editor), Mario di Bernado (Editor), R. Eddie Wilson (Editor), Hinke M. Osinga (Editor), Martin E. Homer (Editor), and Alan R. Champneys (Editor), eds. Nonlinear Dynamics and Chaos: Where do we go from here? Taylor & Francis, 2002.
Find full textJ, Hogan S., ed. Nonlinear dynamics and chaos: Where do we go from here? Bristol: Institute of Physics Pub., 2003.
Find full textBook chapters on the topic "Teorie chaosu"
Barnes-Holmes, Dermot, Steven C. Hayes, and Simon Dymond. "El yo y las reglas autodirigidas." In Teoría del marco relacional: Un enfoque postskinneriano de la cognición y el lenguaje humanos, edited by Javier Virues-Ortega and Agustín Pérez-Bustamante Pereira, translated by Javier Virues-Ortega and Agustín Pérez-Bustamante Pereira, 155–84. ABA España, 2021. http://dx.doi.org/10.26741/978-84-09-31730-1_07.
Full text