To see the other types of publications on this topic, follow the link: Ternary phase diagram NaF.

Journal articles on the topic 'Ternary phase diagram NaF'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Ternary phase diagram NaF.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Savchuk, R. N., N. V. Faidyuk, A. A. Omel’chuk, V. A. Khokhlov, and I. V. Korzun. "Phase diagram of the ternary NaF-LiF-LaF3 system." Russian Metallurgy (Metally) 2013, no. 2 (February 2013): 138–42. http://dx.doi.org/10.1134/s0036029513020109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schacherl, Bianca, Rachel Eloirdi, Rudy J. M. Konings, and Ondrej Beneš. "Thermodynamic Assessment of the NaF-KF-UF4 System." Thermo 1, no. 2 (August 27, 2021): 232–50. http://dx.doi.org/10.3390/thermo1020016.

Full text
Abstract:
In the Molten Salt Reactor (MSR) concept, metal fluorides are key components of possible fuel and coolant salts. The fast reactor option opens the possibility for alternatives to the Li based matrix salts, avoiding the costly 7Li enrichment and the tritium production from residual 6Li. Such alternatives can be based on NaF and KF as matrix components. In this study, two pseudo-binary phase diagrams of NaF-UF4 and KF-UF4, and the NaF-KF-UF4 pseudo-ternary system were experimentally investigated using Differential Scanning Calorimetry (DSC). The obtained data were used to perform a full thermodynamic assessment of the NaF-KF-UF4 system. The calculated pseudo-ternary eutectic was found at 807 K and a 68.9-7.6-23.5 mol% NaF-KF-UF4 composition. The comprehensive experimental and modelling data obtained in this work provide further extension of the JRCMSD thermodynamic database describing thermodynamic properties of key fuel and coolant salts for the MSR technology.
APA, Harvard, Vancouver, ISO, and other styles
3

Buhaenko, Valery, Volodymyr Chupryna, and Oleh Lysenko. "MELT PROPERTIES OF THE FOUR SALT SYSTEM AlF3-KF-NaF-ZrF4." Ukrainian Chemistry Journal 86, no. 7 (August 20, 2020): 65–74. http://dx.doi.org/10.33609/2708-129x.86.7.2020.65-74.

Full text
Abstract:
The fusibility of salt mixtures in the anhydrous quadruple AlF3-KF-NaF-ZrF4 system was studied. The direction of lowering the melting point of substances in the tetrahedron of the composition of the quadruple system, the influence of complexation on lowering the melting point of salt mixtures, were clarified. The fusibility of salts in the ternary AlF3-NaF-ZrF4 system was investigated experimentally by methods of thermal phase analysis. The diagram of fusibility to the isotherm of 900 °C is constructed. Primary crystallization fields are represented by the phases of the initial salts (AlF3, KF, ZrF4) of the compounds that were formed in binary subsystems (2KF∙ZrF4, 7NaF∙6ZrF4, 3NaF∙4ZrF4, 5NaF∙3AlF3) and Na3AlF6-Na3ZrF7 solid solutions. The minimum melting point was 466 ° C in a triple eutectic. The fusibility of salt mixtures was experimentally studied in the subsystem K2ZrF6-Na2ZrF6-KAlF4-NaAlF4, which was a section of the tetrahedron of the composition of the quadruple system AlF3-KF-NaF-ZrF4. The fusibility diagram of this subsystem was constructed. A triple point with a melting point of 450 °C was found. Primary crystallization fields are represented by compounds K2ZrF6, Na2ZrF6 and solid solutions KAlF4-NaAlF4. The low-melting region of the compositions in the tetrahedron of the composition of the quadruple system was shifted to the faces NaF-KF-ZrF4 and AlF3-KF-ZrF4. The intense chemical interaction of the starting materials of the quadruple system with the formation of complex compounds and the extensive formation of solid solutions complicated the determination of crystallizing solid phases and the establishment of monovariant equilibria in quadruple mixtures. Quadruple eutectic in the four component system was formed by the merger of four monovariant lines. To calculate the composition of the quadruple eutectic by the melting temperature and the composition of the eutectic of the triple subsystems, the coordinates of the four triple points are necessary. The characteristic of two triple points was obtained as a result of an experimental study of the fusibility diagrams of auxiliary sections of a tetrahedron of the composition: K2ZrF4-Na2ZrF6-KAlF4-NaAlF4 and KZrF6-NaAlF4-(0,5NaF+0,5ZrF4)-KAlF4, which were located near the quadruple eutectic.
APA, Harvard, Vancouver, ISO, and other styles
4

Jin, Luchao, Zhitao Li, Ahmad Jamili, Mohannad Kadhum, Jun Lu, Bor-Jier Shiau, Jeffrey H. Harwell, and Mojdeh Delshad. "An Analytical Solution for Three-Component, Two-Phase Surfactant Flooding Dependent on the Hydrophilic/Lipophilic-Difference Equation and the Net-Average-Curvature Equation of State." SPE Journal 22, no. 05 (March 22, 2017): 1424–36. http://dx.doi.org/10.2118/185946-pa.

Full text
Abstract:
Summary Microemulsion phase behavior is crucial to surfactant flooding performance and design. In previous studies, analytical/numerical solutions for surfactant flooding were developed dependent on the classical theory of multicomponent/multiphase displacement and empirical microemulsion phase-behavior models. These phase-behavior models were derived from empirical correlations for component-partition coefficients or from the Hand-rule model (Hand 1930), which empirically represents the ternary-phase diagram. These models may lack accuracy or predictive abilities, which may lead to improper formulation design or unreliable recovery predictions. To provide a more-insightful understanding of the mechanisms of surfactant flooding, we introduced a novel microemulsion phase-behavior equation of state (EOS) dependent on the hydrophilic/lipophilic-difference (HLD) equation and the net-average curvature (NAC) model, which is called HLD-NAC EOS hereafter. An analytical model for surfactant flooding was developed dependent on coherence theory and this novel HLD-NAC EOS for two-phase three-component displacement. Composition routes, component profile along the core, and oil recovery can be determined from the analytical solution. The analytical solution was validated against numerical simulation as well as experimental study. This HLD-NAC EOS based analytical solution enables a systematic study of the effects of phase-behavior-dependent variables on surfactant-flooding performance. The effects of solution gas and pressure on microemulsion phase behavior were investigated. It was found that an increase of solution gas and pressure would lead to enlarged microemulsion bank and narrowed oil bank. For a surfactant formulation designed at standard conditions, the analytical solution was able to quantitatively predict its performance under reservoir conditions.
APA, Harvard, Vancouver, ISO, and other styles
5

Fedorov, P. P., and A. V. Rappo. "NaF-CaF2-YbF3 phase diagram." Russian Journal of Inorganic Chemistry 53, no. 7 (July 2008): 1126–29. http://dx.doi.org/10.1134/s0036023608070231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dvořák, V., V. Danielik, O. Matal, Marta Chrenková, and M. Boca. "Phase diagram of the system NaF-SnF2." Journal of Thermal Analysis and Calorimetry 91, no. 2 (February 2008): 541–44. http://dx.doi.org/10.1007/s10973-006-8320-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Danielik, V., and J. Gabová. "Phase diagram of the system Na3AlF6–NaF–Na2SO4." Thermochimica Acta 366, no. 1 (January 2001): 79–87. http://dx.doi.org/10.1016/s0040-6031(00)00709-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Danielik, V., and J. Gabčová. "Phase Diagram of the System NaF-KF-AlF3." Journal of Thermal Analysis and Calorimetry 76, no. 3 (2004): 763–73. http://dx.doi.org/10.1023/b:jtan.0000032261.54207.1e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mlynariková, Jarmila, Marta Chrenková, Vladimír Danielik, Vladimír Daněk, and Oldřich Matal. "Revised Phase Diagram of the System NaF–NaBF4." Monatshefte für Chemie - Chemical Monthly 139, no. 2 (December 10, 2007): 77–80. http://dx.doi.org/10.1007/s00706-007-0673-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Combs, Leon L., and Gregory W. Lynn. "Computer-Generated Ternary Phase Diagram." Journal of Chemical Education 72, no. 7 (July 1995): 608. http://dx.doi.org/10.1021/ed072p608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Raghavan, V. "Ternary Aluminum Phase Diagram Updates." Journal of Phase Equilibria and Diffusion 33, no. 6 (September 19, 2012): 468. http://dx.doi.org/10.1007/s11669-012-0111-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Raghavan, V. "Ternary Aluminum Phase Diagram Updates." Journal of Phase Equilibria and Diffusion 34, no. 1 (October 20, 2012): 26. http://dx.doi.org/10.1007/s11669-012-0143-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Raghavan, V. "Ternary Aluminum Phase Diagram Updates." Journal of Phase Equilibria and Diffusion 28, no. 5 (July 20, 2007): 439. http://dx.doi.org/10.1007/s11669-007-9159-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Raghavan, V. "Ternary Iron Phase Diagram Updates." Journal of Phase Equilibria and Diffusion 30, no. 4 (May 13, 2009): 368. http://dx.doi.org/10.1007/s11669-009-9535-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Raghavan, V. "Ternary Iron Phase Diagram Updates." Journal of Phase Equilibria and Diffusion 31, no. 2 (March 11, 2010): 165. http://dx.doi.org/10.1007/s11669-010-9651-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Raghavan, V. "Ternary Aluminum Phase Diagram Updates." Journal of Phase Equilibria and Diffusion 32, no. 5 (June 24, 2011): 447. http://dx.doi.org/10.1007/s11669-011-9917-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Raghavan, V. "Ternary Aluminum Phase Diagram Updates." Journal of Phase Equilibria and Diffusion 32, no. 6 (August 24, 2011): 552. http://dx.doi.org/10.1007/s11669-011-9940-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Raghavan, V. "Ternary Iron Phase Diagram Updates." Journal of Phase Equilibria and Diffusion 33, no. 3 (April 18, 2012): 223. http://dx.doi.org/10.1007/s11669-012-0033-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Raghavan, V. "Ternary iron phase diagram updates." Journal of Phase Equilibria 15, no. 4 (August 1994): 407. http://dx.doi.org/10.1007/bf02647561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Raghavan, V. "Ternary iron phase diagram updates." Journal of Phase Equilibria 19, no. 3 (June 1998): 261. http://dx.doi.org/10.1007/bf02701092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Chrenková, Marta, Vladimír Danielik, Blanka Kubíkova, and Vladimír Daněk. "CALPHAD: Phase diagram of the system LiFNaFK2NbF7." Calphad 27, no. 1 (March 2003): 19–26. http://dx.doi.org/10.1016/s0364-5916(03)00027-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Elayech, N., H. Fitouri, R. Boussaha, A. Rebey, and B. El Jani. "Calculation of InAsBi ternary phase diagram." Vacuum 131 (September 2016): 147–55. http://dx.doi.org/10.1016/j.vacuum.2016.06.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Raghavan, V. "Addendum ternary iron phase diagram updates." Journal of Phase Equilibria 24, no. 3 (May 2003): 256. http://dx.doi.org/10.1361/105497103770330578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Raghavan, V. "Addendum ternary iron phase diagram updates." Journal of Phase Equilibria and Diffusion 25, no. 1 (February 2004): 76. http://dx.doi.org/10.1007/s11669-004-0174-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Raghavan, V. "Addendum ternary iron phase diagram updates." Journal of Phase Equilibria and Diffusion 26, no. 1 (February 2005): 56. http://dx.doi.org/10.1007/s11669-005-0059-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Garkushin, I. K., M. S. Ragrina, and M. A. Sukharenko. "Phase equilibria in the ternary system NaF–KF–CsF." Russian Journal of Inorganic Chemistry 62, no. 1 (January 2017): 111–13. http://dx.doi.org/10.1134/s0036023617010041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Danielik, V., and J. Gabova. "ChemInform Abstract: Phase Diagram of the System Na3AlF6-NaF-Na2SO4." ChemInform 32, no. 17 (April 24, 2001): no. http://dx.doi.org/10.1002/chin.200117014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Fleurial, J. P., and A. Borshchevsky. "Si‐Ge‐Metal Ternary Phase Diagram Calculations." Journal of The Electrochemical Society 137, no. 9 (September 1, 1990): 2928–37. http://dx.doi.org/10.1149/1.2087101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Stloukal, Radek, Karel Komers, and Jaroslav Machek. "Ternary Phase Diagram Biodiesel Fuel - Methanol - Water." Journal für Praktische Chemie/Chemiker-Zeitung 339, no. 1 (1997): 485–87. http://dx.doi.org/10.1002/prac.19973390188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Zhang, L., X. Wei, Y. Lin, and F. Wang. "A ternary phase diagram for amorphous carbon." Carbon 94 (November 2015): 202–13. http://dx.doi.org/10.1016/j.carbon.2015.06.055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Aufderhorst-Roberts, Anders, George R. Heath, James A. Goodchild, and Simon D. Connell. "The Ternary Lipid Phase Diagram by AFM." Biophysical Journal 110, no. 3 (February 2016): 582a. http://dx.doi.org/10.1016/j.bpj.2015.11.3111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Nagels, Els, J. Van Humbeeck, and L. Froyen. "The Ag–Cu–Ge ternary phase diagram." Journal of Alloys and Compounds 482, no. 1-2 (August 2009): 482–86. http://dx.doi.org/10.1016/j.jallcom.2009.04.055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Raghavan, V. "Erratum to: Ternary iron phase diagram updates." Journal of Phase Equilibria 15, no. 5 (October 1994): 523. http://dx.doi.org/10.1007/bf02649403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Berger, Patric, Clemens Schmetterer, Herta Effenberger, and Hans Flandorfer. "The ternary phase diagram Sb-Sn-Ti." Journal of Alloys and Compounds 879 (October 2021): 160272. http://dx.doi.org/10.1016/j.jallcom.2021.160272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kirik, Sergei D., Yulia N. Zaitseva, Darya Yu Leshok, Alexandr S. Samoilo, Petr S. Dubinin, Igor S. Yakimov, Dmitry A. Simakov, and Alexandr O. Gusev. "NaF-KF-AlF3 System: Phase Transition in K2NaAl3F12 Ternary Fluoride." Inorganic Chemistry 54, no. 12 (June 2, 2015): 5960–69. http://dx.doi.org/10.1021/acs.inorgchem.5b00772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Homolová, Viera. "Prediction of Ternary Fe-B-Cr Phase Diagram." Materials Science Forum 782 (April 2014): 45–50. http://dx.doi.org/10.4028/www.scientific.net/msf.782.45.

Full text
Abstract:
Fe-B-Cr ternary system and its binary subsystems have been studied with aim to develop database of parameters for various thermodynamic calculations of complex systems with boron (for example modified ferritic and austenitic steels for energy industry). All corresponding binary phase diagram were calculated with software THERMO-CALC. Prediction of ternary phase diagram for the Fe-B-Cr system was modelled with using binary data of corresponding subsystems. The prediction was compared with available literature experimental results of phase analysis. The experimental results were used for modifying of the phase diagram prediction by Calphad-method. In future the modified prediction is going to be compared with our experimental results of phase analysis of prepared model alloys to receive most reliable phase diagram of the system.
APA, Harvard, Vancouver, ISO, and other styles
37

Verdiev, Nadinbeg N., Patimat A. Arbukhanova, Alibek B. Alkhasov, Ukhmaali G. Magomedbekov, Zaira N. Verdieva, and Eldar G. Iskenderov. "LiF – NaF – KCl SYSTEM." IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 59, no. 5 (July 12, 2018): 37. http://dx.doi.org/10.6060/tcct.20165905.5344.

Full text
Abstract:
The stable cross section of LiF - NaF - KCl quadruple mutual system Li, Na, K // F, Cl was studied with the differential thermal (DTA) and X-ray fluorescence (XRF) methods. It was established that in a system the eutectic composition crystallizing at 591 ° C is realized. Temperatures of starting solid-phase reactions were revealed in the ternary systems mutual Na, K // F, Cl and Li, Na // F, Cl, (715 and 650 °C, respectively) corresponding to the conversion of reactants of metastable diagonals into products of stable diagonals.
APA, Harvard, Vancouver, ISO, and other styles
38

OHTANI, Hiroshi, and Taiji NISHIZAWA. "Calculation of Fe-C-S Ternary Phase Diagram." Tetsu-to-Hagane 73, no. 1 (1987): 152–59. http://dx.doi.org/10.2355/tetsutohagane1955.73.1_152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

ZHOU, Kanggen, Toshihide TAKENAKA, Nobuaki SATO, and Michio NANJO. "Phase diagram for LiCl-KCl-NbCl5 ternary system." Shigen-to-Sozai 107, no. 4 (1991): 227–30. http://dx.doi.org/10.2473/shigentosozai.107.227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

OHTANI, Hiroshi, and Taiji NISHIZAWA. "Calculation of Fe-C-S ternary phase diagram." Transactions of the Iron and Steel Institute of Japan 26, no. 7 (1986): 655–63. http://dx.doi.org/10.2355/isijinternational1966.26.655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

OHTANI, Hiroshi, Mitsuhiro HASEBE, Kiyohito ISHIDA, and Taiji NISHIZAWA. "Calculation of Fe-C-B ternary phase diagram." Transactions of the Iron and Steel Institute of Japan 28, no. 12 (1988): 1043–50. http://dx.doi.org/10.2355/isijinternational1966.28.1043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

WANG, Bo-wen, Wen-mei HUANG, Zhi-chao JI, Zhi-hua WANG, Ying SUN, and Ling WENG. "Phase diagram of Sm-Nd-Fe ternary system." Transactions of Nonferrous Metals Society of China 23, no. 6 (June 2013): 1633–38. http://dx.doi.org/10.1016/s1003-6326(13)62641-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Cénédèse, P., Y. Calvayrac, and A. Marty. "Ternary coherent phase diagram on the FCC lattice." Journal de Physique I 4, no. 7 (July 1994): 1063–75. http://dx.doi.org/10.1051/jp1:1994184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kuznetsov, V. V., W. Sadowski, and V. S. Sorokin. "The coherent phase diagram of AIIIBv ternary system." Crystal Research and Technology 20, no. 10 (October 1985): 1373–80. http://dx.doi.org/10.1002/crat.2170201012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Butt, Darryl P., and Terry C. Wallace. "The UZrC Ternary Phase Diagram above 2473 K." Journal of the American Ceramic Society 76, no. 6 (June 1993): 1409–19. http://dx.doi.org/10.1111/j.1151-2916.1993.tb03919.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Raghavan, V. "Ternary and Higher Order Iron Phase Diagram Updates." Journal of Phase Equilibria 24, no. 1 (February 1, 2003): 56. http://dx.doi.org/10.1361/105497103770331009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Jingkui Liang, Zhan Chen, Fei Wu, and Sishen Xie. "Phase diagram of SrOCaOCuO ternary system." Solid State Communications 75, no. 3 (July 1990): 247–52. http://dx.doi.org/10.1016/0038-1098(90)90279-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Raghavan, V. "Ternary and Higher Order Iron Phase Diagram Updates." Journal of Phase Equilibria and Diffusion 33, no. 5 (August 1, 2012): 391. http://dx.doi.org/10.1007/s11669-012-0098-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Raghavan, V. "Ternary and Higher Order Iron Phase Diagram Updates." Journal of Phase Equilibria and Diffusion 34, no. 2 (December 22, 2012): 123. http://dx.doi.org/10.1007/s11669-012-0171-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Raghavan, V. "Ternary and Higher Order Aluminum Phase Diagram Updates." Journal of Phase Equilibria and Diffusion 33, no. 1 (February 2012): 52. http://dx.doi.org/10.1007/s11669-012-9979-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography