Academic literature on the topic 'Terrain vehicle'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Terrain vehicle.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Terrain vehicle"
EL-KABBANY, AHMED, and A. RAMIREZ-SERRANO. "TERRAIN ROUGHNESS ASSESSMENT FOR HIGH SPEED UGV NAVIGATION IN UNKNOWN HETEROGENEOUS TERRAINS." International Journal of Information Acquisition 07, no. 02 (June 2010): 165–76. http://dx.doi.org/10.1142/s0219878910002142.
Full textWei, Wei, Xin Hui Liu, and Yan Li Chen. "Research on Stability of a 2 DOF Articulated Vehicle." Advanced Materials Research 201-203 (February 2011): 2709–16. http://dx.doi.org/10.4028/www.scientific.net/amr.201-203.2709.
Full textRahman, A., A. Yahya, and A. K. M. Mohiuddin. "Mobility investigation of a designed and developed segmented rubber track vehicle on Sepang peat terrain in Malaysia." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 221, no. 7 (July 1, 2007): 789–800. http://dx.doi.org/10.1243/09544070jauto139.
Full textWaldron, K. J. "Terrain Adaptive Vehicles." Journal of Mechanical Design 117, B (June 1, 1995): 107–12. http://dx.doi.org/10.1115/1.2836442.
Full textWaldron, K. J. "Terrain Adaptive Vehicles." Journal of Vibration and Acoustics 117, B (June 1, 1995): 107–12. http://dx.doi.org/10.1115/1.2838649.
Full textYang, Fan, Guoyu Lin, and Weigong Zhang. "Terrain classification for terrain parameter estimation based on a dynamic testing system." Sensor Review 35, no. 4 (September 21, 2015): 329–39. http://dx.doi.org/10.1108/sr-01-2015-0003.
Full textTaghavifar, Hamid, and Subhash Rakheja. "A methodology to analyze the vehicle vibration response to deformable terrain stiffness and damping properties." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 234, no. 4 (July 21, 2019): 1123–36. http://dx.doi.org/10.1177/0954407019863610.
Full textKale, Yogesh S., S. V. Rathkanthiwar, Bhagyashree Sharma, Janhavi Ghuguskar, Kireet Deshmukh, Rushikesh Kate, and Pranay Thakre. "Autonomous Terrain Vehicle." Indian Journal of Science and Technology 14, no. 25 (July 5, 2021): 2119–27. http://dx.doi.org/10.17485/ijst/v14i25.872.
Full textAghazadeh, N., and H. Taghavifar. "Study on the Track Wheeled Vehicle Designing for Off-Road Operations on Snowy and Wet Terrains." Cercetari Agronomice in Moldova 48, no. 4 (December 1, 2015): 5–12. http://dx.doi.org/10.1515/cerce-2015-0047.
Full textFeng, Yu, and Qu Xian. "Development and application of testing system for vibration and ride comfort of all-terrain vehicle." Noise & Vibration Worldwide 50, no. 8 (August 17, 2019): 239–44. http://dx.doi.org/10.1177/0957456519869930.
Full textDissertations / Theses on the topic "Terrain vehicle"
Becker, Carl Martin. "Profiling of rough terrain." Pretoria : [s.n.], 2008. http://upetd.up.ac.za/thesis/available/etd-11262009-171410/.
Full textSmith, Robert. "Terrain-aided navigation of an underwater vehicle." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244626.
Full textFrisk, Alexander. "Real-Time Vehicle Trails in Deformable Terrain." Thesis, Umeå universitet, Institutionen för datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-136485.
Full textWiberg, Viktor. "Terrain machine learning : A predictive method for estimating terrain model parameters using simulated sensors, vehicle and terrain." Thesis, Umeå universitet, Institutionen för fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-149815.
Full textNoréus, Olof. "Modelling of six-wheeled electric transmission terrain vehicle." Licentiate thesis, KTH, Aeronautical and Vehicle Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4291.
Full textIn vehicles with electric transmission and independent wheel stations, it is possible to have a possibility to control propulsion, steering and suspension individually for each wheel. This makes it possible to improve mobility, performance and driving safety. The long term goal of this work is to develop a methodt hat can evaluate and improve the mobility of such vehicles in terrain. This contribution concerns how a six wheeled electric transmission vehicle should be modelled to enable evaluation of the dynamic behaviour in different type of terrain. This is made by combining modelling of vehicle, transmission and tire-terrain behaviour.
For wheeled vehicles an electric transmission with hub motors provides the ability to accurately control the torque on every wheel independently, giving a great ability to improve both mobility in terrain and vehicle behaviour on road. In this work the components of a diesel-electric powertrain for off-road vehicles are modelled and a control layout with the possibility to include functions for improved performance both while driving off- and on-road is proposed.
To handle driving on soft ground, a tire/terrain model is needed. The model should include lateral deformation in order to be able to steer. A tire/terrain model is derived based on the ideas of Wong and Reece. The terrain characteristics are chosen to be described by parameters according to the Bekker model, since this data are widely available in literature.
The developed tire/terrain model has been implemented together with a vehicle model. This terrain vehicle model is shown to be able to estimate sinkage, rolling resistance, traction force and steering characteristics, of a six wheeledterrain vehicle using electric transmission.
To conclude, models of a six-wheeled vehicle with electric transmission and tire models both for soft and rigid ground have been developed. These models form a simulation platform, which makes it possible to evaluate control strategies for the electric transmission with the purpose to improve mobility.
Noréus, Olof. "Modelling of six-wheeled electric transmission terrain vehicle /." Stockholm : Kungl. tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4291.
Full textJuriga, Jacob T. "Terrain aided navigation for REMUS autonomous underwater vehicle." Thesis, Monterey, California: Naval Postgraduate School, 2014. http://hdl.handle.net/10945/42654.
Full textThis research investigates the ability to create an undersea bathymetry map and navigate relative to the map. This is known as terrain aided navigation (TAN). In our particular case, the goal was for an autonomous underwater vehicle (AUV) to reduce positional uncertainty through the use of downward-looking swath sonar and employing TAN techniques. This is considered important for undersea operations where positioning systems such as GPS are either not available or difficult to put in place. There are several challenges associated with TAN that are presented: The image processing necessary to extract altitude data from the sonar image, the initial building of the bathymetry map, incorporating a system and measurement model that takes into consideration AUV motion and sensor uncertainty and near-optimal, real-time estimation algorithms. The thesis presents a methodology coupled with analysis on datasets collected from joint Naval Postgraduate School/National Aeronautical Space Administration experimentation conducted at the Aquarius undersea habitat near Key Largo, Florida. .
Pedreira, Carabel Carlos Javier. "Terrain Mapping for Autonomous Vehicles." Thesis, KTH, Datorseende och robotik, CVAP, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-174132.
Full textAutonoma fordon har blivit spetsen för bilindustrin i dag i sökandet efter säkrare och effektivare transportsystem. En av de viktigaste sakerna för varje autonomt fordon består i att vara medveten om sin position och närvaron av hinder längs vägen. Det aktuella projektet behandlar position och riktning samt terrängkartläggningsproblemet genom att integrera en visuell distansmätnings och kartläggningsmetod. RGB-D kameran Kinect v2 från Microsoft valdes som sensor för att samla in information från omgivningen. Den var ansluten till en Intel mini PC för realtidsbehandling. Båda komponenterna monterades på ett fyrhjuligt forskningskonceptfordon (RCV) för att testa genomförbarheten av den nuvarande lösningen i utomhusmiljöer. Robotoperativsystemet (ROS) användes som utvecklingsmiljö med C++ som programmeringsspråk. Den visuella distansmätningsstrategin bestod i en bildregistrerings-algoritm som kallas Adaptive Iterative Closest Keypoint (AICK) baserat på Iterative Closest Point (ICP) med hjälp av Oriented FAST och Rotated BRIEF (ORB) som nyckelpunktsutvinning från bilder. En rutnätsbaserad lokalkostnadskarta av rullande-fönster-typ implementerades för att få en tvådimensionell representation av de hinder som befinner sig nära fordonet inom ett fördefinierat område, i syfte att möjliggöra ytterligare applikationer för körvägen. Experiment utfördes både offline och i realtid för att testa systemet i inomhus- och utomhusscenarier. Resultaten bekräftade möjligheten att använda den utvecklade metoden för att spåra position och riktning av kameran samt upptäcka föremål i inomhusmiljöer. Men utomhus visades begränsningar i RGB-D-sensorn som gör att den aktuella systemkonfigurationen är värdelös för utomhusbruk.
Kawale, Sujay J. "Implication of Terrain Topology Modelling on Ground Vehicle Reliability." Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/31241.
Full textMaster of Science
Smail, Robert A. "Wisconsin all terrain vehicle owners : recreational motivations and attitudes toward regulation /." Link to full text, 2007. http://epapers.uwsp.edu/thesis/2007/Smail.pdf.
Full textBooks on the topic "Terrain vehicle"
Wang, Shifeng. Road Terrain Classification Technology for Autonomous Vehicle. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6155-5.
Full textSmith, Jay H. The most rugged all-terrain vehicles. Minneapolis, Minn: Capstone Press, 1995.
Find full textWells, Charles Arthur. Atv trails guide Arizona, Phoenix Region. Monument, CO: FunTreks, Inc, 2008.
Find full textGuide to Moab, UT backroads & 4-wheel drive trails. Colorado Springs, CO: FunTreks, Inc., 2000.
Find full textGuide to Arizona backroads & 4-wheel drive trails: Easy, moderate, difficult backcountry driving adventures. Colorado Springs, CO: FunTreks, 2001.
Find full textWells, Charles A. ATV trails guide: Colorado : Silverton, Ouray, Lake City, Telluride. Monument, Colo: FunTreks, Inc., 2009.
Find full textGuide to Moab, UT backroads & 4-wheel drive trails. 2nd ed. Colorado Springs, CO: FunTreks, 2008.
Find full textWells, Charles A. Guide to Colorado backroads & 4-wheel drive trails, vol. 2. Colorado Springs, Colo: FunTreks, Inc., 1999.
Find full textWells, Charles A. Guide to Colorado backroads & 4-wheel drive trails. Colorado Springs, Colo: FunTreks, Inc., 1998.
Find full textWells, Charles A. Guide to Southern California backroads & 4-wheel drive trails. Colorado Springs, CO: FunTreks, 2003.
Find full textBook chapters on the topic "Terrain vehicle"
Hossain, Mohammad Quazi Raaheeb, Mehdi Azim, Tadib Chowdhury, Abhijit Saha Prince, Mashfique Ahmed, and Md Nasfikur R. Khan. "Six Wheeled All Terrain Multipurpose Vehicle." In Learning and Analytics in Intelligent Systems, 104–10. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42363-6_12.
Full textHirose, Shigeo, Jun Miyake, and Sanehito Aoki. "Terrain Adaptive Tracked Vehicle HELIOS-I." In Advanced Robotics: 1989, 676–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83957-3_46.
Full textWang, Shifeng. "Acceleration-Based Road Terrain Classification." In Road Terrain Classification Technology for Autonomous Vehicle, 21–53. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6155-5_3.
Full textWang, Shifeng. "Image-Based Road Terrain Classification." In Road Terrain Classification Technology for Autonomous Vehicle, 55–68. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6155-5_4.
Full textWang, Shifeng. "LRF-Based Road Terrain Classification." In Road Terrain Classification Technology for Autonomous Vehicle, 69–78. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6155-5_5.
Full textWang, Shifeng. "Multiple-Sensor Based Road Terrain Classification." In Road Terrain Classification Technology for Autonomous Vehicle, 79–93. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6155-5_6.
Full textChristou, N., K. Parthenis, B. Dimitriadis, and N. Gouvianakis. "Digital models for autonomous vehicle terrain — following." In Robotic Systems, 407–13. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2526-0_47.
Full textRollins, Mark. "Creating an All-Terrain LEGO Technic Vehicle." In Practical LEGO Technics, 81–116. Berkeley, CA: Apress, 2013. http://dx.doi.org/10.1007/978-1-4302-4612-1_5.
Full textEconomou, J. T., D. J. Purdy, D. Galvão Wall, D. Diskett, and D. Simner. "Intelligent based terrain preview controller for a 3-axle vehicle." In Advanced Vehicle Control AVEC’16, 445–50. CRC Press/Balkema, P.O. Box 11320, 2301 EH Leiden, The Netherlands, e-mail: Pub.NL@taylorandfrancis.com, www.crcpress.com – www.taylorandfrancis.com: Crc Press, 2016. http://dx.doi.org/10.1201/9781315265285-71.
Full textWang, Shifeng. "Introduction." In Road Terrain Classification Technology for Autonomous Vehicle, 1–5. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6155-5_1.
Full textConference papers on the topic "Terrain vehicle"
DuPont, Edmond M., Rodney G. Roberts, Majura F. Selekwa, Carl A. Moore, and Emmanual G. Collins. "Online Terrain Classification for Mobile Robots." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81659.
Full textBarthlow, Dakota, Vijitashwa Pandey, David Gorsich, and Paramsothy Jayakumar. "Off-Road Vehicle Path Planning Using Geodesics on a Multifactor Terrain Model." In ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22609.
Full textAkcabay, Deniz T., N. C. Perkins, and Zheng-Dong Ma. "Predicting the Mobility of Tracked Robotic Vehicles." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60877.
Full textSreenivasan, S. V., and P. Nanua. "Kinematic Geometry of Wheeled Vehicle Systems." In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/mech-1137.
Full textLarson, A. C., R. M. Voyles, and G. K. Demir. "Terrain classification through weakly-structured vehicle/terrain interaction." In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004. IEEE, 2004. http://dx.doi.org/10.1109/robot.2004.1307154.
Full textWasfy, Tamer M., Hatem M. Wasfy, and Jeanne M. Peters. "High-Fidelity Multibody Dynamics Vehicle Model Coupled With a Cohesive Soil Discrete Element Model for Predicting Vehicle Mobility." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47134.
Full textCortner, Alex, James M. Conrad, and Nabila A. BouSaba. "Autonomous all-terrain vehicle steering." In SOUTHEASTCON 2012. IEEE, 2012. http://dx.doi.org/10.1109/secon.2012.6196932.
Full textGulden, Florian, and Metin Seyrek. "M.A.T.V - Mars All Terrain Vehicle." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2003. http://dx.doi.org/10.4271/2003-01-2433.
Full textJones, Jack A., and Ralph D. Lorenz. "Titan aerover all-terrain vehicle." In SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM- STAIF 2002. AIP, 2002. http://dx.doi.org/10.1063/1.1449784.
Full textSun, T. C., K. Alyass, Jinfeng Wei, D. Gorsich, M. Chaika, and J. Ferris. "Time Series Modeling of Terrain Profiles." In 2005 SAE Commercial Vehicle Engineering Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2005. http://dx.doi.org/10.4271/2005-01-3561.
Full textReports on the topic "Terrain vehicle"
Hodgdon, Taylor, Anthony Fuentes, Jason Olivier, Brian Quinn, and Sally Shoop. Automated terrain classification for vehicle mobility in off-road conditions. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40219.
Full textRushing, John, and Daniel Harder. Improved vehicle mobility by using terrain surfacing systems. Engineer Research and Development Center (U.S.), April 2020. http://dx.doi.org/10.21079/11681/36357.
Full textCreighton, Daniel C., George B. McKinley, Randolph A. Jones, and Richard B. Ahlvin. Terrain Mechanics and Modeling Research Program: Enhanced Vehicle Dynamics Module. Fort Belvoir, VA: Defense Technical Information Center, May 2009. http://dx.doi.org/10.21236/ada500759.
Full textRasmussen, S. J., M. W. Orr, D. Carlos, A. F. Deglopper, and B. R. Griffith. Simulating Multiple Micro-Aerial Vehicles and a Small Unmanned Aerial Vehicle in Urban Terrain Using MultiUAV2. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada446221.
Full textShneier, Michael, Tsai Hong, Tommy Chang, Harry Scott, Steve Legowik, Gerry Cheok, Chuck Giauque, David Gilsinn, and Christopher Witzgall. Terrain characterization for TRL-6 evaluation of an unmanned ground vehicle. Gaithersburg, MD: National Institute of Standards and Technology, 2004. http://dx.doi.org/10.6028/nist.ir.7186.
Full textSakamoto, Moriyuki, Eiichi Yagi, Tetsuya Kubota, Hiroshi Takata, and Takeshi Tadokoro. Analysis on Sport All-Terrain Vehicle Jumping with Multibody Dynamic Simulations. Warrendale, PA: SAE International, October 2005. http://dx.doi.org/10.4271/2005-32-0013.
Full textKelly, Alonzo, Ammar Husain, and Venkat Rajagopalan. Real-Time Identification of Wheel Terrain Interaction Models for Enhanced Autonomous Vehicle Mobility. Fort Belvoir, VA: Defense Technical Information Center, April 2014. http://dx.doi.org/10.21236/ada617349.
Full textReid, Alexander. Compaction-Based Deformable Terrain Model as an Interface for Real-Time Vehicle Dynamics Simulations. Fort Belvoir, VA: Defense Technical Information Center, April 2013. http://dx.doi.org/10.21236/ada573959.
Full textBodie, Mark, Michael Parker, Alexander Stott, and Bruce Elder. Snow-covered obstacles’ effect on vehicle mobility. Engineer Research and Development Center (U.S.), November 2020. http://dx.doi.org/10.21079/11681/38839.
Full textAffleck, Rosa T. Disturbance Measurements From Off-Road Vehicles on Seasonal Terrain. Fort Belvoir, VA: Defense Technical Information Center, July 2005. http://dx.doi.org/10.21236/ada464712.
Full text