Academic literature on the topic 'Terrestrial biosphere model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Terrestrial biosphere model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Terrestrial biosphere model"
KATO, Tomomichi. "Data assimilation for terrestrial biosphere model." Climate in Biosphere 13 (2013): 1–7. http://dx.doi.org/10.2480/cib.13.1.
Full textIchii, K., T. Suzuki, T. Kato, A. Ito, T. Hajima, M. Ueyama, T. Sasai, et al. "Multi-model analysis of terrestrial carbon cycles in Japan: reducing uncertainties in model outputs among different terrestrial biosphere models using flux observations." Biogeosciences Discussions 6, no. 4 (August 27, 2009): 8455–502. http://dx.doi.org/10.5194/bgd-6-8455-2009.
Full textPENG, Shu-Shi, Chao YUE, and Jin-Feng CHANG. "Developments and applications of terrestrial biosphere model." Chinese Journal of Plant Ecology 44, no. 4 (2020): 436–48. http://dx.doi.org/10.17521/cjpe.2019.0315.
Full textIchii, K., T. Suzuki, T. Kato, A. Ito, T. Hajima, M. Ueyama, T. Sasai, et al. "Multi-model analysis of terrestrial carbon cycles in Japan: limitations and implications of model calibration using eddy flux observations." Biogeosciences 7, no. 7 (July 2, 2010): 2061–80. http://dx.doi.org/10.5194/bg-7-2061-2010.
Full textMedvigy, David, and Paul R. Moorcroft. "Predicting ecosystem dynamics at regional scales: an evaluation of a terrestrial biosphere model for the forests of northeastern North America." Philosophical Transactions of the Royal Society B: Biological Sciences 367, no. 1586 (January 19, 2012): 222–35. http://dx.doi.org/10.1098/rstb.2011.0253.
Full textO'Malley-James, Jack T., Charles S. Cockell, Jane S. Greaves, and John A. Raven. "Swansong biospheres II: the final signs of life on terrestrial planets near the end of their habitable lifetimes." International Journal of Astrobiology 13, no. 3 (January 14, 2014): 229–43. http://dx.doi.org/10.1017/s1473550413000426.
Full textLei, Yadong, Xu Yue, Hong Liao, Cheng Gong, and Lin Zhang. "Implementation of Yale Interactive terrestrial Biosphere model v1.0 into GEOS-Chem v12.0.0: a tool for biosphere–chemistry interactions." Geoscientific Model Development 13, no. 3 (March 12, 2020): 1137–53. http://dx.doi.org/10.5194/gmd-13-1137-2020.
Full textPereira, Fabio F., Fabio Farinosi, Mauricio E. Arias, Eunjee Lee, John Briscoe, and Paul R. Moorcroft. "Technical note: A hydrological routing scheme for the Ecosystem Demography model (ED2+R) tested in the Tapajós River basin in the Brazilian Amazon." Hydrology and Earth System Sciences 21, no. 9 (September 14, 2017): 4629–48. http://dx.doi.org/10.5194/hess-21-4629-2017.
Full textWu, Mousong, Marko Scholze, Michael Voßbeck, Thomas Kaminski, and Georg Hoffmann. "Simultaneous Assimilation of Remotely Sensed Soil Moisture and FAPAR for Improving Terrestrial Carbon Fluxes at Multiple Sites Using CCDAS." Remote Sensing 11, no. 1 (December 25, 2018): 27. http://dx.doi.org/10.3390/rs11010027.
Full textHoogakker, B. A. A., R. S. Smith, J. S. Singarayer, R. Marchant, I. C. Prentice, J. R. M. Allen, R. S. Anderson, et al. "Terrestrial biosphere changes over the last 120 kyr." Climate of the Past 12, no. 1 (January 18, 2016): 51–73. http://dx.doi.org/10.5194/cp-12-51-2016.
Full textDissertations / Theses on the topic "Terrestrial biosphere model"
Kolus, Hannah. "Assessing Terrestrial Biosphere Model Simulation of Ecosystem Drought Response and Recovery." Thesis, Northern Arizona University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10283123.
Full textSevere drought plays a critical role in altering the magnitude and interannual variability of the net terrestrial carbon sink. Drought events immediately decrease net primary production (NPP), and drought length and magnitude tend to enhance this negative impact. However, satellite and in-situ measurements have also indicated that ecosystem recovery from extreme drought can extend several years beyond the return to normal climate conditions. If an ecosystem’s drought recovery time exceeds the time interval between successive droughts, these legacy effects may reinforce the impact of future drought. Since the frequency and severity of extreme climate events are expected to increase with climate change, both the immediate and prolonged impact of drought may contribute to amplified climate warming by decreasing the strength of the land carbon sink. However, it is unknown whether terrestrial biosphere models capture the impact of drought legacy effects on carbon stocks and cycling. Using a suite of twelve land surface models from the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP), we assessed model ability to simulate drought legacy effects by analyzing the modeled NPP response to drought events across forested regions of the US and Europe. We found that modeled drought legacy effects last about one year (2% reduction in NPP), with complete NPP recovery in the second post-drought year. Since observations suggest that legacy effects extend up to four years post-drought, with a 9% growth reduction in the first post-drought year, models appear to underestimate both the timescales and magnitude of drought legacy effects. We further explored vegetation sensitivity to climate anomalies through global, time-lagged correlation analysis of NPP and climatic water deficit. Regional differences in the lag time between climate anomaly and NPP response are prevalent, but low sensitivities (correlations) characterize the entire region. Significant correlations coincided with characteristic lag times of 0 to 6 months, indicating relatively immediate NPP response to moisture anomalies. Model ability to accurately simulate vegetation’s response to drought and sensitivity to climate anomalies is necessary in order to produce reliable forecasts of land carbon sink strength and, consequently, to predict the rate at which climate change will progress in the future. Thus, the discrepancies between observed and simulated vegetation recovery from drought points to a potential critical model deficiency.
Zaehle, Sönke. "Process-based simulation of the terrestrial biosphere : an evaluation of present-day and future terrestrial carbon balance estimates and their uncertainty." Phd thesis, Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2005/526/.
Full textAt present, carbon sequestration in terrestrial ecosystems slows the growth rate of atmospheric CO2 concentrations, and thereby reduces the impact of anthropogenic fossil fuel emissions on the climate system. Changes in climate and land use affect terrestrial biosphere structure and functioning at present, and will likely impact on the terrestrial carbon balance during the coming decades - potentially providing a positive feedback to the climate system due to soil carbon releases under a warmer climate. Quantifying changes, and the associated uncertainties, in regional terrestrial carbon budgets resulting from these effects is relevant for the scientific understanding of the Earth system and for long-term climate mitigation strategies.
A model describing the relevant processes that govern the terrestrial carbon cycle is a necessary tool to project regional carbon budgets into the future. This study (1) provides an extensive evaluation of the parameter-based uncertainty in model results of a leading terrestrial biosphere model, the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM), against a range of observations and under climate change, thereby complementing existing studies on other aspects of model uncertainty; (2) evaluates different hypotheses to explain the age-related decline in forest growth, both from theoretical and experimental evidence, and introduces the most promising hypothesis into the model; (3) demonstrates how forest statistics can be successfully integrated with process-based modelling to provide long-term constraints on regional-scale forest carbon budget estimates for a European forest case-study; and (4) elucidates the combined effects of land-use and climate changes on the present-day and future terrestrial carbon balance over Europe for four illustrative scenarios - implemented by four general circulation models - using a comprehensive description of different land-use types within the framework of LPJ-DGVM.
This study presents a way to assess and reduce uncertainty in process-based terrestrial carbon estimates on a regional scale. The results of this study demonstrate that simulated present-day land-atmosphere carbon fluxes are relatively well constrained, despite considerable uncertainty in modelled net primary production. Process-based terrestrial modelling and forest statistics are successfully combined to improve model-based estimates of vegetation carbon stocks and their change over time. Application of the advanced model for 77 European provinces shows that model-based estimates of biomass development with stand age compare favourably with forest inventory-based estimates for different tree species. Driven by historic changes in climate, atmospheric CO2 concentration, forest area and wood demand between 1948 and 2000, the model predicts European-scale, present-day age structure of forests, ratio of biomass removals to increment, and vegetation carbon sequestration rates that are consistent with inventory-based estimates. Alternative scenarios of climate and land-use change in the 21st century suggest carbon sequestration in the European terrestrial biosphere during the coming decades will likely be on magnitudes relevant to climate mitigation strategies. However, the uptake rates are small in comparison to the European emissions from fossil fuel combustion, and will likely decline towards the end of the century. Uncertainty in climate change projections is a key driver for uncertainty in simulated land-atmosphere carbon fluxes and needs to be accounted for in mitigation studies of the terrestrial biosphere.
Kohlenstoffspeicherung in terrestrischen Ökosystemen reduziert derzeit die Wirkung anthropogener CO2-Emissionen auf das Klimasystem, indem sie die Wachstumsrate der atmosphärischer CO2-Konzentration verlangsamt. Die heutige terrestrische Kohlenstoffbilanz wird wesentlich von Klima- und Landnutzungsänderungen beeinflusst. Diese Einflussfaktoren werden sich auch in den kommenden Dekaden auf die terrestrische Biosphäre auswirken, und dabei möglicherweise zu einer positiven Rückkopplung zwischen Biosphäre und Klimasystem aufgrund von starken Bodenkohlenstoffverlusten in einem wärmeren Klima führen. Quantitative Abschätzungen der Wirkung dieser Einflussfaktoren - sowie der mit ihnen verbundenen Unsicherheit - auf die terrestrische Kohlenstoffbilanz sind daher sowohl für das Verständnis des Erdsystems, als auch für eine langfristig angelegte Klimaschutzpolitik relevant.
Um regionale Kohlenstoffbilanzen in die Zukunft zu projizieren, sind Modelle erforderlich, die die wesentlichen Prozesse des terrestrischen Kohlenstoffkreislaufes beschreiben. Die vorliegende Arbeit (1) analysiert die parameterbasierte Unsicherheit in Modellergebnissen eines der führenden globalen terrestrischen Ökosystemmodelle (LPJ-DGVM) im Vergleich mit unterschiedlichen ökosystemaren Messgrößen, sowie unter Klimawandelprojektionen, und erweitert damit bereits vorliegende Studien zu anderen Aspekten der Modelunsicherheit; (2) diskutiert unter theoretischen und experimentellen Aspekten verschiedene Hypothesen über die altersbedingte Abnahme des Waldwachstums, und implementiert die vielversprechenste Hypothese in das Model; (3) zeigt für eine europäische Fallstudie, wie Waldbestandsstatistiken erfolgreich für eine verbesserte Abschätzung von regionalen Kohlenstoffbilanzen in Wäldern durch prozessbasierten Modelle angewandt werden können; (4) untersucht die Auswirkung möglicher zukünftiger Klima- und Landnutzungsänderungen auf die europäische Kohlenstoffbilanz anhand von vier verschiedenen illustrativen Szenarien, jeweils unter Berücksichtigung von Klimawandelprojektionen vier verschiedener Klimamodelle. Eine erweiterte Version von LPJ-DGVM findet hierfür Anwendung, die eine umfassende Beschreibung der Hauptlandnutzungstypen beinhaltet.
Die vorliegende Arbeit stellt einen Ansatz vor, um Unsicherheiten in der prozessbasierten Abschätzung von terrestrischen Kohlenstoffbilanzen auf regionaler Skala zu untersuchen und zu reduzieren. Die Ergebnisse dieser Arbeit zeigen, dass der Nettokohlenstoffaustausch zwischen terrestrischer Biosphäre und Atmosphäre unter heutigen klimatischen Bedingungen relativ sicher abgeschätzt werden kann, obwohl erhebliche Unsicherheit über die modelbasierte terrestrische Nettoprimärproduktion existiert. Prozessbasierte Modellierung und Waldbestandsstatistiken wurden erfolgreich kombiniert, um verbesserte Abschätzungen von regionalen Kohlenstoffvorräten und ihrer Änderung mit der Zeit zu ermöglichen. Die Anwendung des angepassten Modells in 77 europäischen Regionen zeigt, dass modellbasierte Abschätzungen des Biomasseaufwuchses in Wäldern weitgehend mit inventarbasierten Abschätzungen für verschiede Baumarten übereinstimmen. Unter Berücksichtigung von historischen Änderungen in Klima, atmosphärischem CO2-Gehalt, Waldfläche und Holzernte (1948-2000) reproduziert das Model auf europäischer Ebene die heutigen, auf Bestandsstatistiken beruhenden, Abschätzungen von Waldaltersstruktur, das Verhältnis von Zuwachs und Entnahme von Biomasse, sowie die Speicherungsraten im Kohlenstoffspeicher der Vegetation. Alternative Szenarien von zukünftigen Landnutzungs- und Klimaänderungen legen nahe, dass die Kohlenstoffaufnahme der europäischen terrestrischen Biosphäre von relevanter Größenordnung für Klimaschutzstrategien sind. Die Speicherungsraten sind jedoch klein im Vergleich zu den absoluten europäischen CO2-Emissionen, und nehmen zudem sehr wahrscheinlich gegen Ende des 21. Jahrhunderts ab. Unsicherheiten in Klimaprojektionen sind eine Hauptursache für die Unsicherheiten in den modellbasierten Abschätzungen des zukünftigen Nettokohlenstoffaustausches und müssen daher in Klimaschutzanalysen der terrestrischen Biosphäre berücksichtigt werden.
Ostberg, Sebastian. "Joint impacts of climate and land use change on the terrestrial biosphere." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19319.
Full textThere are two major pathways of human interference with the terrestrial biosphere: 1) directly through land use change (LUC) and 2) indirectly through anthropogenic climate change (CC) which in turn drives ecosystem change. This dissertation presents an attempt to assess human-induced biosphere change through both these pathways in a consistent and quantitative way. The analysis is based on an integrated indicator of macro-scale changes in biogeochemical characteristics and ecosystem structure. Large shifts in these basic building blocks of the biosphere are taken to indicate a risk to more complex ecosystem properties as they potentially disrupt long-standing biotic interactions. This dissertation relies on simulations with the dynamic global vegetation, agriculture and hydrology model LPJmL to quantify how biogeochemical characteristics and ecosystem structure have responded to historical LUC and CC. For future projections LPJmL is driven by a large number of CC and LUC scenarios, using the same indicator to measure the impact on the biosphere. Simulation results show that major impacts on the biosphere from CC and LUC have expanded from merely 0.5% of the land surface in 1700 to 25-31% of the land surface today. Land use has been the main anthropogenic driver causing major ecosystem change in the past. For the future, results show that CC is expected to take over as the main anthropogenic driver of major ecosystem change during this century in all but the most ambitious climate mitigation scenarios. Despite a growing world population, some land use scenarios project that future efficiency improvements will allow for a reduction of agricultural land and hence a reduction of the impact of LUC on the terrestrial biosphere. Yet, results also show that reduced LUC impacts will likely not be able to compensate for the increase in CC impacts, and human-induced transformation of the biosphere is likely to grow during this century regardless of the considered scenario.
Stangl, Zsofia Réka. "Acclimation of plants to combinations of abiotic factors : connecting the lab to the field." Doctoral thesis, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-133982.
Full textÖkande atmosfäriskt CO2 och andra växthusgaser kopplade till den accelererande globala uppvärmningen utsätter växter och ekosystem för stressen av en snabbt förändrande abiotisk miljö. Att förstå påverkan av ett globalt klimat i förändring står i fokus inom växtforskning och utvecklandet av mer motståndskraftiga grödor är ett viktigt mål inom programmen för växtförädling. Vår förståelse av växters responser och acklimatisering till abiotiska förhållanden har förbättrats avsevärt under de senaste decennierna, men på grund av kombinationen av en komplex abiotisk miljö och stor biologisk mångfald, både på molekylär nivå såväl som på art-nivå, kvarstår en del frågetecken. Syftet med denna avhandling var att upprätta ett samband mellan växters responser på temperaturförändringar och kol-kvävebalansen hos växter. Arbetet i denna avhandling inriktades på ekologiskt betydande arter i den boreala regionen, Picea abies, Pinus sylvestris and Betula pendula; samt Betula utilis som är en av de framträdande trädarterna på höga höjder i Himalaya. Resultaten som presenteras visar att suboptimala temperaturer i kombination med andra abiotiska faktorer kan ha additiva effekter som inte enkelt kan härledas från effekten av de två faktorerna var för sig. Låg kvävetillgänglighet ökade den negativa effekten av låg temperatur, medan förhöjd CO2-halt förbättrade planttillväxt under måttliga temperaturökningar, men under en mer extrem temperaturökning förvärrades dock den negativa effekten av värme. Jag framför även bevis på att arter, trots att de grupperas i samma funktionella grupp eller finns inom samma biom, kan ha olika tröskelvärden beträffande temperatur och förskjutningar i C/N-balansen i sin miljö och att dessa skillnader, i viss utsträckning, kan förklaras av deras olika tillväxtstrategier. Vidare visar jag resultat som stöder hypotesen att C-N - flöden mellan mykorrhiza och träd är starkt beroende av C och N i miljön. Detta belyser i sin tur betydelsen av samarbetet mellan träd och mykorrhiza gällande kolbindningskapaciteten i den boreala regionen. I denna avhandling presenterar jag även en generaliserad empiriskt baserad matematisk modell som med hög precision kan beskriva respiration-temperatur svar av växtfunktionella typer eller biom, vilken ger en mer exakt uppskattning av NPP i globala klimatmodeller. Mina resultat åstadkommer nya insikter i de interaktiva temperatur-kol-kväve-responserna hos växter, och tar ett steg mot bättre förståelse för växters och skogars reaktion på framtida klimat.
Books on the topic "Terrestrial biosphere model"
The aggregate representation of terrestrial land covers within global climate models (GCM): Final report, (NASA contract no. NAGW-3368). [Washington, DC: National Aeronautics and Space Administration, 1996.
Find full textBook chapters on the topic "Terrestrial biosphere model"
Kindermann, J., M. K. B. Lüdeke, F. W. Badeck, R. D. Otto, A. Klaudius, Ch Häger, G. Würth, et al. "Structure of A Global and Seasonal Carbon Exchange Model for The Terrestrial Biosphere The Frankfurt Biosphere Model (FBM)." In Terrestrial Biospheric Carbon Fluxes:, 675–84. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1982-5_45.
Full textAtkin, Owen K., Nur H. A. Bahar, Keith J. Bloomfield, Kevin L. Griffin, Mary A. Heskel, Chris Huntingford, Alberto Martinez de la Torre, and Matthew H. Turnbull. "Leaf Respiration in Terrestrial Biosphere Models." In Advances in Photosynthesis and Respiration, 107–42. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68703-2_6.
Full textGoldewijk, Kees Klein, and Rik Leemans. "Systems Models of Terrestrial Carbon Cycling." In Carbon Sequestration in the Biosphere, 129–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79943-3_8.
Full textOrr, James C. "Accord Between Ocean Models Predicting Uptake of Anthropogenic CO2." In Terrestrial Biospheric Carbon Fluxes:, 465–81. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1982-5_32.
Full textOverdieck, D. "Effects of Atmospheric CO2 Enrichment on CO2 Exchange Rates of Beech Stands in Small Model Ecosystems." In Terrestrial Biospheric Carbon Fluxes:, 259–77. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1982-5_17.
Full textFischer, Alberte. "Seasonal features of global net primary productivity models for the terrestrial biosphere." In Past and Future Rapid Environmental Changes, 469–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60599-4_36.
Full text"Terrestrial Biosphere Models." In Climate Change and Terrestrial Ecosystem Modeling, 1–24. Cambridge University Press, 2019. http://dx.doi.org/10.1017/9781107339217.002.
Full textHarvey, L. D. Danny. "Box Models of the Terrestrial Biosphere." In The Carbon Cycle, 238–47. Cambridge University Press, 2000. http://dx.doi.org/10.1017/cbo9780511573095.021.
Full textConference papers on the topic "Terrestrial biosphere model"
Lindborg, Tobias, Ulrik Kautsky, and Lars Brydsten. "Landscape Modeling for Dose Calculations in the Safety Assessment of a Repository for Spent Nuclear Fuel." In The 11th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2007. http://dx.doi.org/10.1115/icem2007-7115.
Full textReports on the topic "Terrestrial biosphere model"
Kercher, J. R., and J. Q. Chambers. Description, calibration and sensitivity analysis of the local ecosystem submodel of a global model of carbon and nitrogen cycling and the water balance in the terrestrial biosphere. Office of Scientific and Technical Information (OSTI), October 1995. http://dx.doi.org/10.2172/198872.
Full textBlaylock, B. G., F. O. Hoffman, and S. M. Bartell. (Biospheric model validation in urban, terrestrial, and aquatic environments, Budapest, Hungary, Vienna, Austria, Neuherberg, and Schmallenberg, W. Germany, April 25--May 12, 1988): Foreign trip report. Office of Scientific and Technical Information (OSTI), June 1988. http://dx.doi.org/10.2172/6061862.
Full text